[]- ||][-() -

MOUNTAINE COPY

TOTE WHITE A TELEVISION OF THE STREET OF THE

cony sia _____ or ____ colles

EST PROCESSED

DOC TAB PROJ OFFICER

ACCESSION MASTER FILE

DATE

ESTI CONTROL NR

45857

CY NR _ ! CY

Technical Note

1 . 18

1965-1

A. W. Armenti

D. F. Clapp

A. I. Schulman

R. A. Wiesen

10 March 1965

Prepared under Electronic Systems Division Contract AF 19 (628)-500 by

Programmable Film Reader

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

PROGRAMMABLE FILM READER

A. W. ARMENTI D. F. CLAPP

Group 28

Group 22

A. I. SCHULMAN R. A. WIESEN

Group 25

TECHNICAL NOTE 1965-1

10 MARCH 1965

ABSTRACT

The Programmable Film Reader, consisting of digital computer, magnetic tape units, CRT, and film transport with optical and electronic circuits, is a device for reducing radar A-scope film data to digital form. This is done by scanning selected portions of the film with a spot of light under program control. The relative amount of light passing through the film is measured by the device and reported back to the computer for processing.

A set of computer programs, called the Film Reading Program System, has been written for the PDP-1 computer and Programmable Film Reader. These programs will read films in three formats; A-scope traces, A-scope traces with fiducial marks and Project Radar A-scope traces. The amplitudes of the traces are sampled up to about 500 times and the digitized results written onto magnetic tape in IBM format. This report presents a description of the computer programs together with flow charts and listings. The reader is presumed familiar with the PDP-1 computer and the MACRO assembly language.

The latest modification to the system adapts it for use with the MIDAS assembly program and with a new high-speed magnetic tape system on the PDP-1 computer.

Accepted for the Air Force Stanley J. Wisniewski Lt Colonel, USAF Chief, Lincoln Laboratory Office

TABLE OF CONTENTS

ABSTRACT					
Ι.	PROGRAMMABLE FILM READER				
	A.	Gen	1		
	В.	Equ	3		
		1.	Digital Computer	3	
		2.	Cathode Ray Tube (CRT)	5	
		3.	Programmed Tape Control and Tape Transports	5	
		4.	Film Transport	5	
	C.	Film	n Reading Program	6	
II.	FILM READING PROGRAM SYSTEM				
	A.	Seri	15		
		1.	Typewriter Control Routine	17	
		2.	Macroscope	21	
		3.	Octal Corrector	26	
		4.	Titling Routine	29	
		5.	Initial Scan Routine	33	
		6.	Initial Position Calculation	36	
		7.	Lateral Scan Routine (Write, Title, Restart)	42	
		8.	Film Advance Subroutine	55	
		9.	Octal Print Subroutine	62	
		10.	Vertical Scan Subroutine	65	
		11.	End Routine	71	
		12.	Advance Film Routine	71	
		13.	Block Output Routine	74	
		14.	Output Format	78	
	B.	Series 1a			

	C.	Series 2			
		1.	Macroscope w/Reference Lines	82	
		2.	Fiducial Marks Position Calculation Routine	89	
		3.	Lateral Scan Routine	92	
		4.	Film Advance Subroutine	99	
		5.	Vertical Scan Subroutine	100	
		6.	Constants and Temporary Storage	104	
	D.	Serie	es 2 <mark>a</mark>	105	
	E.	Series 3			
		1.	Fiducial and Timing Marks Position Calculation	107	
		2.	Lateral Scan Routine	116	
		3.	Film Advance Subroutine	123	
		4.	Timing Marks Reader Subroutine	125	
		5.	Constants and Temporary Storage	129	
III.	MODIFICATIONS TO FILM READING PROGRAM SYSTEM				
	Α.	Tape System		130	
	В.	MIDA	AS Assembly Program	130	
IV.	V. CONCLUSIONS				
APPENDIX A			EXTENDED OPS AND MACROS	135	
APPENDIX B			MAGNETIC TAPE ROUTINES FOR PROGRAMMED TAPE SYSTEM	137	
APPENDIX C			EQUIPMENT CIRCUIT DIAGRAMS	148	
APPENDIX D			MAGNETIC TAPE ROUTINES FOR AUTOMATIC EQUIPMENT	151	
APPENDIX E			CALIBRATION OF PROGRAMMABLE FILM READER	164	

I. PROGRAMMABLE FILM READER

A. General

In many cases, radar data are recorded by making photographs of an A-scope display. This display presents an amplitude vs time plot of the signal received by the radar in a chosen range gate. Although these photographic records have been valuable for qualitative viewing, their use in the past as a quantitative recording medium has been limited because of the enormous task of reading thousands of traces manually. In the course of a study of data processing for the Air Force Ballistic Missile Re-entry Systems tests, the need was recognized for a rapid, automatic method of extracting data from these photographs, and recording them on magnetic tape in a form suitable for entry into a computer. Hence, the development of a device to accomplish this was undertaken.

The basic elements of the Programmable Film Reader, shown in Fig. 1, are the CRT which displays a point of light under program control; the reference photomultiplier which is adjusted so that its output is a constant voltage that is a measure of the background level of the film; the signal photomultiplier whose output voltage is a measure of the density of the part of the film illuminated by the point of light displayed on the CRT; the difference amplifier and threshold detector which determine whether trace or background was illuminated; the digital computer; and the magnetic tape units. The computer is used to move a spot of light over the film, in an appropriate manner, to record the output of the threshold detector, and to record the digital data on magnetic tape.

The film reading system described has been in use since March 1963, and in the ensuing six months the feasibility of rapid, automatic digitization of A-scope film has been clearly demonstrated. More than 60,000 radar traces have been digitized at a reading rate ranging from 3 to 12 seconds per trace. The reading rate is principally a function of the number of light points displayed. The number of light points that must be displayed is primarily a function of film quality, film format, and the number

Fig. 1 Programmable film reader

of samples desired across the trace. For low quality film, e.g., film with appreciable photographic noise, a program is employed which applies a matched filter algorithm to the film reader outputs. This filtering process can require as much as 100 seconds reading time per trace. For high quality film, a program is employed which substitutes a simple selection algorithm for the matched filter routine. This program requires about 3 seconds reading time per trace. Because of this significant time saving obtainable with good quality film, a major effort has been made to improve film production procedures.

B. Equipment Components

The Lincoln Laboratory film reading system shown in Fig. 2 consists of four major pieces of equipment:

- (i) a digital computer,
- (ii) a CRT,
- (iii) two magnetic tape units, and
- (iv) the film transport and electro-optical comparison circuit.

 The commercial versions of the first three equipment components currently in use are described in Digital Equipment Corporation publication # F-15D, entitled "PDP-1 Handbook", excerpted in Sections 1, 2, and 3 below.

1. Digital Computer

The digital computer used in this system* is a solid state, single-address, single-instruction, stored-program machine with five-megacycle circuitry, magnetic core storage with 5-microsecond access, and 18 bit parallel processing. As currently used, the machine consists of the central processor with a 4096 word memory module, (expandable in units of 4096 words to 65,536 words), a paper tape reader, a paper tape punch, and an on-line typewriter. The central processor contains the control unit, the arithmetic unit, the in-out transfer control, the memory module and a one-channel sequence break system.

^{*} The PDP-1 built by Digital Equipment Corporation.

Fig. 2 Lincoln Laboratory film reading system

2. Cathode Ray Tube (CRT)

The CRT has magnetic focusing and deflection provided by solid-state circuitry. Using a 16-inch tube, it has a raster size of 9.25×9.25 inches with 1024×1024 addressable locations, of which 512 are resolvable along each axis. The display of each point requires 50 microseconds and is accomplished by means of an instruction, "Display One Point on CRT". The points are displayed with an accuracy of ± 3 per cent of the raster size.

3. Programmed Tape Control and Tape Transports

The computer in this system is equipped to use magnetic tape as an input-output medium by the installation of suitable magnetic tape controls and tape transports. The tape control transfers information between the computer Input-Output register and magnetic tape one character (7 bits) at a time. All transfer operations, including timing, formatting, error checking, and assembly of characters into computer words are performed by stored programs. The use of the tape control allows a choice of tape format, including the standard IBM format of 200 7-bit characters per inch, and inter-record gap of 3/4 inch and an inter-file gap of 3 1/2 inches.*

4. Film Transport

The film reader and transport mechanism used in the digitization consists of a twin-lens device built at Lincoln Laboratory for use on the TX-2 computer and later modified. Through electronic circuitry, the film reader can communicate with the computer.

The film reading equipment must do two things: (i) detect and indicate the passage of light through the film and (ii) advance the film under program control.

The first task is carried out by the photomultipliers and electronic circuitry; the second task is accomplished under program control by the equipment described below.

^{*}This system has now been changed to permit recording densities of 556 and 800 characters per inch (see Section III).

When all of the traces within view of the reader have been scanned, the program causes the film to advance by actuating a flip-flop in the computer (called "Program Flag 6"). The film is advanced by an 8-sprocket drive wheel turned by a Geneva drive which makes 1/4 revolution for every whole revolution of the driving motor. When flag 6 is on, the film advance motor runs, advancing the film by two sprocket holes per revolution. A cam, mounted on the motor shaft, in conjunction with a microswitch senses and reports to the computer every revolution of the motor shaft. In this way, the computer may turn on the motor, count its revolutions, and thus know how far the film will have been advanced.

C. Film Reading Program

In principle, the equipment described in this report could, with suitable computer programs, be used to read any signals or patterns that can be photographed in black and white. As currently implemented, the system reads A-scope photographs.

The logic of the program may be conveniently divided into four principal parts:

- (i) the Set Up and Monitoring Routines,
- (ii) the Vertical Scan Subroutines,
- (iii) the Lateral Scan and Film Advance Routines, and
- (iv) the Data Recording Subroutines.

The relation of these routines to the film reading process is shown in Fig. 3.

1. Set Up and Monitoring Routines

The Set Up and Monitoring Routines include a typewriter control routine which permits the film reading operator, by using the on-line typewriter, to write a title record on magnetic tape, advance the magnetic tape a given number of records, initiate scanning to locate the traces in view of the reader, determine and/or change the contents of parameter locations in the program, etc.

Fig. 3 General flow diagram of program operation

3-PA-1344

At the end of a successful read-in of the punched paper program tape, the program initiates a carriage return. At this point the operator may strike on the typewriter any one of 20 keys (1, 0-7, /, "tab", "carriage return", "backspace", s, c, g, p, e, r, m) which will be recognized by the program as a signal to transfer to a particular subroutine or program location; to any other character, the program responds with a question mark and remains in the typewriter listening loop. The characters recognized by the program when it is in the control loop and the action it will undertake when each character is typed are described below.

- a. <u>Titling Routine (1)</u> Typing 1 causes the program to go to a titling routine. At this point the operator may type as many as 120 characters which will be accepted as a title to be written on magnetic tape. This routine causes the title to be stored in memory, the actual writing on tape being accomplished by striking "g" (see p. 10). The Titling Routine is terminated with a carriage return.
- b. Octal Corrector Routine (Digits 0-7,/, tab, backspace, carriage return) Any one of these characters on type-in causes the program to transfer to a routine called the "Octal Corrector", the digits being interpreted as octal numbers. The Octal Corrector is used to determine and/or change the contents of a register in the computer. Typing in the four octal numbers designating a core location followed by a slash causes the routine to initiate a tab, produce a type-out in octal of the contents of that register, and initiate a second tab. After a type-out, if the operator wishes to replace the current contents with new contents, he may type in the new contents (in octal), and then strike the carriage return key. If the operator is satisfied with the register contents and wishes to make no change, he simply strikes the carriage return key, in which case the contents of the core location addressed by the last type-out will be typed out. This register may be changed by the operator, as described above. Use of tab permits, among other things, the insertion of program patches.

 After the initial type-out of the contents of a register, by typing "backspace" instead

of "carriage return", the operator can cause the Octal Corrector subroutine to advance to the next location in sequence, thus avoiding the need to type each new core location.

After each "backspace", he may alter the contents of the register or not, as he desires. The "backspace" is useful for getting a type-out of the contents of a number of successive registers.

c. <u>Initial Scan Routine (s)</u> Typing "s" causes the program to transfer to a routine which initiates a vertical scan at an x-location set by the Test Word switches on the console. The vertical scan is used to locate the traces within a single viewing frame. The location information is used by other routines to determine when to initiate a film advance. For each point seen along the y-axis during the vertical scan a number is stored in a table whose register location corresponds to the x-position being scanned.

When the routine is in operation, the vertical scan line is displayed on the scope along with markers near the lower and upper ends of the scope showing the lower and upper limits respectively of the viewing frame used for film reading. Offset to the right of the vertical scan line, a point is displayed for every point seen on the film during the vertical scan.

During the operation of this routine, the operator can make optical adjustments to the signal and reference lenses until the offset points from the vertical scan line correspond to the number and positions of the traces on the section of film being viewed. This is a very critical part of the set-up prior to going into the automatic film reading mode since the initial settings of the trace positions will be used by the program to locate automatically the subsequent traces to be read.

d. <u>Initial Calculating Routine (c)</u> Typing "c" causes this routine to search the table set up by the scanning routine described in (c) above, and applies an exponential filter on the number of points seen. The location of a trace is the average of the position where the filter output rises above and falls below a threshold.

The location of each trace "seen", as defined by this process, is typed out if sense switch 4 is up. The positions typed out are the y-positions of each of the traces at the x-location set for the scanning routine. In addition to computing the estimated trace locations, this routine also computes tracking parameters to be used by the film advance routine in determining subsequent trace positions.

e. Go Routine (g) This character causes the program to transfer to a program location which writes the title record on the tape and starts the film reading process. As the film reading progresses through various phases, the program checks the computer console sense switch settings. There are six sense switches on the console that may be set by the operator. If sense switch 1 on the computer is turned on (i.e., the toggle switch is put in the up position), the program will repeatedly reread one trace without writing the data on the tape. Since the scanning will appear on the CRT, the operator can make fine optical adjustments to optimize the reading process. If sense switch 2 is on, all the traces within view of the reader will be read without writing the data on the tape. If sense switch 3 is on, the program will read all the traces in view and then cause the film to be advanced for the next set of traces without recording the data on magnetic tape.

If sense switch 6 is on, the program will cause a momentary display of the trace as read; and if sense switch 4 and 6 are both on, the trace displayed will be held on the scope.

f. Proceed Routine (p) Typing "p" causes the program to transfer to a program location a few instructions beyond the starting location of the Go Routine at which point the film reading process begins without writing the title record. The operator uses the "p" type-in whenever he wishes to resume reading after an interruption. The program assumes that the tracking parameters are in order. If they are not, the operator should first go through the "s" and "c" type-in routines before typing "p".

- g. <u>End Routine (e)</u> Typing "e" causes the program to transfer to a routine which writes an end-of-file mark on the tape and then rewinds it.
- h. Restart Routine (r) Typing "r" causes the program to transfer to a routine which rewinds the tape on which the digitized data has been recorded, spaces it forward a controlled number of records, then restarts the processing at the location transferred to by "p". The number of records to be spaced forward is held in a register labeled "rc". The restart is useful to the operator, if for some reason he wishes to reread a section of film. He can back the film in the reader, set the "rc" register to space forward the appropriate number of records and then, by striking "r", cause the program to resume film reading from that point.

The "rc" register should be set to a number which is the number of traces recorded on the tape plus one.

i. Macroscope (m) Typing "m" causes the program to transfer to a routine called Macroscope which serves as an aid to the operator in making approximate setting of the optics by scanning the area within the view of a raster 512×336 scope coordinates. The results of the scan are displayed immediately below or above the viewed area. By setting test word switches on the computer console, the operator can move the location of the scanning raster horizontally and/or vertically. This feature of the routine is useful in determining the trace boundaries on the x-axis.

After the initial procedure described above, the program is ready to read film automatically. Basic to the reading are the Lateral Scan Routine and the Vertical Scan Subroutines which are described below.

2. The Vertical Scan Subroutines

The actual digitization of the traces on the film is done by making a sequence of vertical scans across the face of the CRT. Each such scan is accomplished by a Vertical Scan Subroutine, two of which are in current use. In each case, the subroutine searches within preset upper and lower limits until trace points are found, but the procedures employed and the criteria for determining when the trace has been found differ considerably.

3. The Lateral Scan and Film Advance Routines

The right and left movement of the vertical scan is controlled by the Lateral Scan Routine. Under control of this routine, the first vertical scan is made at x = x0, a quantity determined by the operator, and all subsequent ones are made at x = (x0+nI), $n = 1, 2, 3, \ldots$, and I is an incrementing quantity also set by the operator. After the preset right hand x-limit has been reached, the same procedure is resumed at x = x0 with negative x-increments until the preset left hand x-limit has been reached. At this point, the program decides whether another trace is within view or whether the film should be advanced. At the completion of this scan procedure, a table called the "Signal Table" has been filled with the ordinates of the trace determined by the Vertical Scan Subroutine for each point sampled along the x-axis. The program may be adjusted to take as many as 512 vertical scans per radar trace.

When the scanning of a single radar trace has been completed, the film reader moves down the film to find the next radar trace. This is done under the control of the "trace location" portion of the Lateral Scan and Trace Location Routines. Specifically, when the end of a trace has been found, and all "raw" data have been recorded, the probable location of the next trace is computed. When it is necessary to advance the film to view the next radar trace, the motor is turned on. The last trace found is tracked as the film advances in order to determine how far the film has moved. The anticipated position of the next radar trace is updated to reflect the movement of the film.

4. Data Recording Subroutines

The subroutines write a 514-word record on magnetic tape. The first two words are the trace count, and a spare, and the remaining 512 words are the Signal Table. The subroutines are also used to place a title at the beginning and an end-of-file at the end of the magnetic tape.

II. FILM READING PROGRAM SYSTEM

The Film Reading Program System is a group of related computer programs written for the Digital Equipment Corporation (DEC) PDP-1 Computer in the MACRO assembly language and is meant to be used with the Lincoln Laboratory Programmable Film Reader, described in Section I.*

These programs, which now exist in three "series", are the result of an extensive revision of the so-called Radar Scan and Baseline Scan programs originally written for use with the film reader. The three "series" are designed to read films of three different formats (see Fig. 4):

Series 1 - A-scope traces on strip film,

Series 2 - A-scope traces on strip film with a single fiducial mark, **

Series 3 - Project radar film, framed film with A-scope traces, timing light and fiducial marks.

In addition, there are two modified programs, Series 1a and Series 2a, which are written to read traces whose orientation is upside down compared to those read by the Series 1 and 2 programs.

Since all of the programs of the system are similar in many respects, only the Series 1 program has been described completely, with the differences between it and the other programs being described in like detail. Textual description, flow charts and listings have been supplied for each.

^{*} Section I contains a general flow diagram (Fig. 3) of the original film reading programs as well as a brief description of each major program block.

^{**} A zero-voltage reference mark at the beginning, and sometimes the end, of the trace; about one μsec long in a 10 μsec sweep.

3-PA-2156

Fig. 4 Film formats

A. Series 1

The computer program described below is similar in many ways to the program described in Sect. I and corresponds closely to the general flow diagram given there as Fig. 3. The following will describe the various routines of the Series 1 program in some detail and should provide, in conjunction with the corresponding flow charts and listings, sufficient material to enable the reader to understand fully its operation.

The program operates most of the time in one of two states: it is in a two instruction "listening loop" in the typewriter control routine, or in a long loop in the lateral-scan control routine. In the former, the computer is waiting for instruction from the operator and in the latter, it is actually reading the film. There are other, less frequently used, excursions possible to which control may be switched from the typewriter and which lead back to the typewriter control routine. These will be described in turn.

film reading program system series 1 25 feb 64 *

/definitions

define bintape

dzm 677

termin

define bcdtape

law 1 dac 677

termin

define rewind

Jsp 5

termin

define space

dac .+2

Jsp 14

termin

define weof

jsp 163

termin

s=1s

msm=iot 73 mcs=iot 34 mcb=iot 70 mwc=iot 71 mrc=iot 72

start

^{*}The material on this "title page" of the program listing consists of a set of macro-instruction definitions and parameter assignments used by the assembly program in producing the binary program. The macros are used throughout the program and their definitions should be noted by the reader before attempting to follow the listings.

1. Typewriter Control Routine

The object of this routine is to provide a mechanism whereby the computer may pause in its operation, wait for a command from the operator via the on-line typewriter and then transfer control to other routines corresponding to typed commands. Its first instruction is located at beg = 1040 and is the first instruction performed after read-in of the program.

The so-called "listening-loop" is the pair of instructions at ctj+1 and ctj+2. On the way to this loop, the program checks to see that the automatic multiply and divide switches are set and, if not, causes "mus" and/or "dis" to be typed out. Then a carriage return is typed out, registers are initialized, the AC, IO and program flags are cleared and the machine enters the listening-loop, where it remains until a typewriter key is struck (i.e., program flag 1 is set to 1).

This version of the program recognizes the characters: a, c, e, g, l, m, p, r, s, carriage return, tab, backspace, slash and the octal digits 0-7. To all others, it responds with a typed out question mark. The digits 0-7 are assembled as an octal string in the register wrd, while the other characters cause a transfer of control to other parts of the program.

The transfer is accomplished by the use of a dispatch table (stored from dtb to dte-1). Each register of the table has in the left six bits the CONCISE code for one of the characters recognized by the program and in the right twelve bits, the address of the corresponding routine.


```
1040/
            law 100
beg,
            mus (O
lio (flex mus
                                 /check for automatic multiply
            sza
            jmp erp
            law 100
            cli
            dis (200
            nop
            lio (flex dis
            sza i
            jmp erp
ctl,
            lio (77
            tyo
cta,
            clc
            dac Chi
            dzm wrd
            cla cli 7-opr
                                 /listen loop
ctj,
            szf 1 1
            Jmp .−1
ctb,
            cla cli 7-opr
            tyi
            rcr 6s
            dac ch
            sub (100000
            sma
            jmp ctd
                                 /not a digit between 1 and 7
            add (070000
            sma
                                 /it is a digit between 1 and 7
            jmp n
ctd,
            init ctc, dtb
                                 /not a digit between 1 and 7
            lac
                                 /search for control character
ctc,
            dap ctx
            xor ctx
            sad ch
            jmp ctf
            index ctc, (lac dte, ctc
            lio (flex ?
err,
                                 /not a legal character
            repeat 3, ril 6s
                                tyo
erp,
            jmp ctl
```

typewriter control routine 15 jan 64

```
lio chi
                                                /dispatch on control character
ctf,
                  lac wrd
                  spi
                  lac Iwt
                  jmp 1 ctx
ctx,
zro,
                  dzm ch
                                                 /digits
                  lac ch
n,
                  ral 3s
                  ior wrd ral 3s
                  dac wrd
                  dzm chi
                   jmp ctj
                  char 11 ttl
char 1s sca
                                                 /character dispatch table
dtb,
                  char lm a
                   char lg bgn
                  char lg bgh
char lp pra
char le end
char lc cv
char lr rst
char l0 zro
                  770000 cr
360000 ta
750000 bs
char 1/ sls
char la adv
dte,
start
```

2. Macroscope

When the computer is in the typewriter listening-loop and an "m" is typed, control is transferred to a routine called "macroscope" -- a program used to provide the operator with a view of what the film reader is seeing. To this end, a raster is displayed on the scope face and each point of it seen by the reader is redisplayed after being offset vertically to an area not covered by the raster. The program cycles until stopped (by setting flag 1 via the typewriter) and during this time the position of the raster is set by means of the test word switches: x controlled by positions 0-8 and y by positions 9-17. Thus the operator may view all portions of the film visible to the reader.

In order that the (apparent) cycle time will be reasonably short, the program is written so that the full cycle consists of sixteen sub-cycles, each of which displays a raster with only 1/16 the density of the full raster (which is made up of every other addressable location). To do this, the 512 x 336 point raster is divided into 64 x 42 boxes with eight points per side, and during each sub-cycle one point is displayed from each box. Incrementing is done in both directions by 2 points, so that the full cycle consists of display of 16 points in each box.

Thus, the program begins by displaying the lower left point of each box in the bottom row of the raster, redisplaying the points, relocated in the y direction, as they are seen by the reader. (The relocation is down if the initial y location from the test word is positive and up if negative.) Next, the program moves up one row of boxes at a time and displays the lower left point of each box. When the top row is finished (and displayed) the sub-cycle is over.

The next sub-cycle displays point (0,1) of each box -- assuming that the lower left corner was (0,0) -- and the following sub-cycles display points (0,2) (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), and (3,3), thus completing the display of the raster.

The coordinates entered in the test word are interpreted as the coordinates of the center of the raster. The use of only 9 bits for each coordinate implies that the maximum values of each are \pm 377 (octal) or \pm 255 (decimal). Thus, since the raster is 512 points wide, a maximum setting of the test word corresponds to the raster being at the edge of the scope in the x-direction, though not in the y-direction. Nevertheless, the range is easily enough to cover the whole area visible to the reader, which is restricted by the geometry of the system to about one-half of the area of the scope face.

The macroscope routine may be used to determine the left and right limits for the scanning process by moving the raster until an edge coincides with the limit of the desired scan. The test word switches may be read to get the x-coordinate of the center of the raster and the coordinate of the right edge will then be this number plus 400, while the left edge will be the number minus 400. The resulting numbers may then be used as c (xmm) and c (xmx) in the lateral scan routine.

The macroscope program may also be used to align the traces on the film with the axes of the scope. By watching the order in which points are redisplayed and tilting the reader left-to-right, the redisplay of a horizontal line may be made to occur during a single horizontal scan of the macroscope program. When this condition occurs the film horizontal and the scope horizontal coincide.


```
macroscope 16 jan 64
a,
              lat+cli 7-opr
              rcr 9s
ral 9s
                                          /y to IO
              sar 1s
              sub (200000+1000
              dac 1x0
add (400000
dac 1x1
                                          /set up boundaries
              add (4000
              dac 1xm
              swap
              sar 1s
              repeat 3, sar 2s
sub (125000+1000
                                        add t
              dac y00
add (250000
dac y11
add (4000
              dac ymx
               lac t
               lio (-251777
              spa
lio (252000
dio Vr
h,
              law 1000
                                          /horizontal interlace
              add 1x1
dac 1x1
              xct h
               add 1x0
              dac 1x0
              lac y11
dac 1y1
              lac y00 dac 1y0
J,
              xct h
                                          /vertical interlace
              add 1y1
               dac 1y1
              xct h
              add 1y0
dac 1y0
k,
               swap
```

lac 1x0

```
dpy
szf 3
1,
               jmp r
add (4000
sas 1x1
jmp l
11,
                                             /horizontal sweep
               dac t
m,
               swap
add (4000
sas 1y1
jmp k
sas ymx
                                             /vertical sweep
               jmp j
szf 1
               jmp ctb lac t
               sas 1xm
                Jmp h
                Jmp a
               dio t
                                              /point seen
r,
               swap
               add vr
swap
                                              /vertical relocation
               dpy
clf 3
lio t
                jmp 11
start
```

3. Octal Corrector

The octal corrector routine provides a means to examine any register in core and change its contents if desired. If, when the machine is in the listening loop, an octal string of up to four digits* followed by a slash is typed, control is transferred to the octal corrector, which causes type-out of the contents of the register whose address was typed in (this process is called opening the register). The machine then types out a tab and returns to the listening loop.

The operator may then type in an octal string of up to six digits* which will replace the contents of the "opened" register. At this point he has three options:

- (1) He may "close" the register by typing a carriage return, whereupon the new contents (if any) of the register will be stored and control returned to the listening loop. If no new contents were typed, control is simply returned to the listening loop.
- (2) He may "close" the register as in (1) and then cause the next sequential register to be "opened" by typing a backspace.
- (3) He may "close" the register as in (1) and then cause the register addressed by that register to be opened by typing a tab.

^{*} Leading zeros may be suppressed. If six digits are typed, the last four will be taken as the address. If more than six digits are typed, a word will be formed by performing successive Inclusive OR operations between the digits as they are typed and the previously formed word rotated left three places. E.g., typing the seven characters 3334445, leaves 334447 as the storage word; this is obtained by performing an IOR operation on the words 334443 and 000005.

octal corrector 16 jan 64

start

```
sls,
                                   /was an octal string typed?
            spi
            Jmp ta6
                                   /no
            Jmp ta5
                                   /yes
bs,
            spi i
                                   /was a correction typed?
            dac i tas
idx Toc
                                   /yes - store it
                                   /no - compute address
                                   /of next register
            Jmp ta3
ta,
            spi i
                                   /was a correction typed?
            dac 1 tas
                                   /yes - store correction
            dac Twt
                                   /store address as next
/register to be opened
ta3,
            lio (77
            tyo
                                   /type carriage return
            and (7777
            Jda opt
                                   /print address of register
                                   /to be opened
            110 (21
            tyo
                                   /type slash
            lac lwt
ta5,
            dzm loc
            dap loc
                                   /save address
ta6.
            dap tas
            110 (36
            tyo
                                   /type tab
            lac 1 tas
dac lwt
            jda opt
                                   /type contents of opened register
            lio (36
            tyo
                                   /type tab
            jmp cta
cr,
            spi i
                                   /was a correction typed?
                                   /yes - store correction
tas,
            dac ch
            dac lwt
                                   /no
            init tas, ch
            Jmp cta
```

4. Titling Routine

The titling routine, to which control is transferred when the character "!" is typed, assembles up to 120 characters in a table of 40 registers after converting them from CONCISE code to IBM tape code. Those characters which have no IBM equivalent (e.g., overstrike, middle dot, backspace, etc.) are ignored. When the table is filled or a carriage return is typed, the computer returns to the listening loop.

titling routine 16 jan 64

dimension tbf(50)

```
ttl,
            110 (202020
                                    /initialize title table
            init tta, tbf
tta.
            dio
            index tta, (dio tbf 50, tta
            dzm wcc
                                    /initialize counter
            init wc1, tbf-1
            110 (36
            tyo
                                    /execute tab
tt1,
            listen
            dio ch
                                    /store character
            lac ch
            sad (20
                                    /is char concise 0?
                                    /yes - put BCD 0 in AC /no - is char concise blank?
            law 12
            sza i
                                    /yes - put BCD blank in AC
            law 20
            sad (57
                                    /no - is char concise left paren?
            law 34 sad (56
                                    /yes - put BCD left paren in AC /no - is char concise overstrike?
            jmp tt1
                                    /yes - ignore char
                                    /no - is char concise middle dot?
            sad (40
            jmp tt1
                                    /yes - ignore char
            sad (72
                                    /no - is char concise lower case?
                                    /yes - ignore char
/no - is char concise upper case?
            jmp tt1
            sad (74
                                    /yes - ignore char
            jmp tt1
            sad (55
law 74
sad (54
                                    /no - is char concise right paren?
                                    /yes - put BCD right paren in AC /no - is char concise minus?
            law 40
                                    /yes - put BCD minus in AC
            sad (75
                                    /no - is char concise backspace?
            jmp tt1
                                    /yes - ignore char
            sad (36
                                    /no - is char concise tab?
                                    /yes - ignore char
/store character
            jmp tt1
            dac ch
            sad (77
                                    /is char concise carriage return?
            jmp tt2
                                    /yes
            lio ch
                                    /no
                                    /index char count - is result + ?
            isp wcc
             jmp wc8
                                    /no - char not first of new word
            law 1 3
                                    /yes - char is first char
            dac wcc
                                    /reset character counter
            idx wc1
            sad (lac tbf 50
                                    /is table filled?
```

wc8, wc1,	Jmp ctl rir 6s lac . rcl 6s dac i wc1 Jmp tt1	/yes - title complete /no - move char into IO 0-5 /bring contents of table register /into AC /put new char into AC 12-17, /moving previous chars left six /store chars back into table /go listen for next character
tt2,	lio i wc1 lac wcc sza sad (-1 jmp cta sad (-2 jmp tt3 ril 6s	/fix format of last table /register used
tt3,	ril 6s dio i wc1 Jmp cta	/restore correctly formated /register

5. Initial Scan Routine

When the character "s" is typed, control is transferred to the initial scan routine, where it remains while the computer executes the instructions of a closed loop until another character is typed, whereupon control is transferred back to the typewriter control routine at ctb.*

The routine displays a vertical scan one point wide from the lowest addressable location on the CRT to the highest at an x-position determined by the ten left-most bits of the Test Word. The vertical scan begins at $y = 377777_8$ (=400000₈)** and advances in steps of two scope points (1000₈) until $y = 400001_8$. At this point the scan has passed the upper limit of the CRT raster.

As each point is displayed during this scan, its light will pass through the optical system of the reader and cause a signal to be sent to the computer or not depending on whether a trace point was "seen" or not. For each point seen, the routine displays a point on the CRT at the y-coordinate of the point seen and at an x-position offset to the right of the scan position by 40_8 points. This x-coordinate is computed at scc, where the quantity 20000_8 is added to the contents of the AC, corresponding to an increase in the x display coordinate of 40_8 .

Furthermore, the number 1000_8 is stored in a slot in a table corresponding to the y-coordinate of each point seen. This table, cleared at the beginning of the routine at sca+1, extends from tbl, corresponding to $y=-777_8$, to tbl+777, corresponding to $y=777_8$. The slot at tbl+377 corresponds to $y=\pm 0$.

When the scan reaches the top of the scope, the routine computes the location of markers which show the upper and lower limits of the effective viewing area and displays them. The table of values and the computed limits are used by the initial position calculation routine described next.

^{*}The character typed will be interpreted by the typewriter control routine.

^{**} Negative numbers in the PDP-1 are represented by their one's complement. Thus any octal number with magnitude 400000 or larger is interpreted as a negative number.

C22-1272A

initial scan 16 jan 64

```
sca,
             clf 7
             clear tbl, tbl 777 /clear data table
             lat 3
lio (400000
sce,
             jmp scg
scf,
             swap
             szf 3
jmp scc
                                     /was the point seen ?
             dpy-i
scg,
             swap
                                     /was a typewriter key struck ?
             szf 1
            Jmp ctb
add (1000
sas (400001
                                     /yes
/no - increment y
                                     /reached top of scope ?
                                     /no
             jmp scf
            setup ch, 10 lac fmx sub fht
                                     /yes - setup to display markers
             sal 5s
             dac t1
             lat
             dac Chn
scq,
             lac chn
            lio fmx
             sil 5s
                                     /display upper marker
             dpy
             lio t1
             dpy
                                     /display lower marker
            add (1000
             dac chn
            1sp ch
                                     /done 10 points?
             jmp scq
jmp sce
                                     /no
/yes
                                     /point seen / display point offset
scc,
            add (20000
             dpy-1
             dio ch
             lac ch
            sar 9s
add (tbl 377
                                     /compute storage location
             dap scd
             law 1000
                                     /store in table
scd,
            dac
            lat 3
             Jmp scg
```

6. Initial Position Calculation

The initial position calculation routine computes the locations and spacing of the traces within view of the film reader as seen by the initial scan routine. The typing of the character "c" causes control to be transferred to this routine at cv, where, after preliminary housekeeping, the table prepared by the initial scan routine is used to compute the locations of the traces crossed by the scan.

The routine applies a simple exponential filter to successive entries in the table and then finds the y-values corresponding to pairs of successive crossings of a given threshold by the filter output. The trace locations are then taken to be the averages of these y-values.

The filter algorithm is

$$x_{0} = 0$$
, $x_{i} = \frac{1}{2} (v_{i} + x_{i-1}) (i < 0)$

where

 v_{i} is the i^{th} input value from the table, and

 $\boldsymbol{x}_{\underline{i}}$ is the corresponding filter output.

The input values, as mentioned earlier, are limited to the set $\{0, 1000_8\}$ corresponding to a point not seen or a point seen, respectively. The threshold value, c(thr), is currently set at 640_8 .

The filter output is initially set equal to zero and, at <u>cv1</u>, the table entries are examined one by one and the filter outputs computed until the first pair of threshold crossings is observed. The y-values corresponding to these crossings then determine the location of the first, or lowest, trace (see Fig. 5a). The mean of these two values is stored at <u>mm0</u>, and a counter, initially zero, is indexed to show that exactly one trace has been found. The process is then restarted at <u>cv1</u> with the next point of the input table.

When and if the routine detects a second trace, its location—found in the same way as the first —replaces the location of the first trace at <u>mm0</u> and the difference between the locations is stored at <u>mm1</u> (see Fig. 5b). The counter is indexed and processing continues.

The detection of a third or subsequent trace results in its location being stored at mm0, the last difference at mm1 and the difference between the last two differences (the last second difference) at mm2 (see Fig. 5c).*

If sense switch 4 is set as the routine is entered, the trace locations are printed out as they are computed.** The routine returns control to the typewriter control loop at ct1 when it has finished its pass through the input table.

^{*} The value stored at mm2 is an acceleration term and does not show up on the drawings, of course.

^{**} The values printed are not in scope coordinates, but rather are scope coordinates times $\mathbf{10}_{_{\mathrm{Q}}}.$

Fig. 5 Operation of initial position calculation routine

initial position calculation 16 jan 64

```
cv,
            lac fmx
            sub fht
            sar 4s
            add (tbl 377
            dap cv1
            dzm ch
            dzm chn
            dzm mmO
            dzm mm1
            dzm mm2
            dzm mt2
cv1,
            lac .
            sas (1000
            sza i
             jmp . 2
             jmp err
                                    /not data from scan program
            add ch
            sar 1s
dac ch
                                    /smoothing
             sub thr
            sma
             jmp cvp
             szf 2
             jmp cvn
cvi,
             idx cv1
            sub (lac tbl 377
            sal 4s
             sub fmx
            spa
            jmp cv1
lac mm1
            cma
             dac mm1
             dac mt1
             lac mmO
             dac mto
             jmp ctl
            lac cv1
sub (lac tbl 377
szf i 2
                                     /above threshold
cvp,
             dac t1
             stf 2
             jmp cvi
             clf 2
                                     /dropped below threshold
cvn,
             lac cv1
             sub (lac tbl 377
            add t1
sal 3s
dac t1
             szs 1 40
```

```
jmp cvq
lio (36
             tyo
             Jda opt
                                      /type out positions
             idx chn
sub (1
cvq,
             szm
             jmp cn2
lac t1
dac mm0
                                       /one trace
             jmp cvi
cn2,
             sub (1
             szm
             jmp cn3
lac t1
                                      /two traces
             sub mm0
             dac mm1
             lac t1
dac mmO
             jmp cvi
cn3,
             lac t1
                                       /three or more
             sub mm0
             sub mm1
             dac mm2
             dac mt2
             add mm1
             dac mm1
add mm0
             dac mm0
             jmp cvi
thr,
           640
                                      /threshold
```

7. Lateral Scan Routine (Write, Title, Restart)

After the preliminary calculations have been made, control may be transferred to the lateral scan routine by means of one of three characters: g, r, or p. The character "g" causes control to pass to location bgn, where the title previously stored is written onto tape and zero is stored in counters which record the number of records on the tape, the number of traces read and the number of times the film has been advanced. Control then passes to pra.

The character "r" causes control to go to location <u>rst</u>, where the magnetic tape on which output is stored is caused to be rewound and then spaced forward the number of records given at location <u>rc</u>. Control then passes to <u>pra</u>.

The character "p" causes control to pass directly to <u>pra</u>, where the position of the first trace to be read is computed. In general, the program will start by reading the second trace from the top — the only exception being the case where only one trace is seen by the initial scan routine, in which case the program begins with that trace.

The routine then stores the x-coordinate of the left-most sample, $c(\underline{xmn})$, in the output record and computes and stores the length of the output record based on the x limits $-c(\underline{xmn})$ and $c(\underline{xmx})$ -preset by the operator.

At location e1, the main loop begins with a check of flag 1 to see if a typewriter key was struck. If so, control is transferred back to the typewriter control loop, otherwise preliminary setup of limits and clearing of data table is done. At hs, an indicator, nps, is set to its initial value of unity; this is the "no point seen" indicator which is set to zero if a scan of a trace detects no points.

The program then does a single vertical scan at $x = c(\underline{x0})$ between $y = c(\underline{yll})$ and $y = c(\underline{yul})$, by a jsp (Jump and Save Program counter) instruction to the vertical scan subroutine. This routine stores the y-coordinate of the trace found (if any) at location \underline{yf} . Thus, the program has at this point the precise location of the trace which it will read at the x-location where reading will begin.

The next few instructions, up to $\underline{e2}$, are designed to allow the program to read only every n^{th} trace, where n is a parameter which may be set by the operator. The instruction at \underline{skn} is assembled as law i 1 and hence the program will read every trace without skipping any. Any other value may be substituted for the 1 by using the octal corrector.

At <u>e2</u>, the upper and lower scanning limits are recomputed on the basis of the location of the trace just detected.

Now begins the actual sampling of the trace amplitudes. In a six-instruction loop starting at <u>hsa</u>, the program causes a series of vertical scans to be made by the vertical scan subroutine at intervals of two scope units starting at x = c(x0) and continuing until x = (xmx). The x and y coordinates are reset to their original values and, at <u>hsl</u>, a seven-instruction loop repeats the scanning to the left from x = c(x0) - 2 to x = c(xmn). Note that since the incrementing is by two units and the test at the end-points is one for equality, the numbers used as origin and left and right limits must all be even or all odd.

The vertical scan subroutine stores the amplitudes found in a table – called the signal table – located at \underline{tbl} (= \underline{tba}). This table forms a major part of the output record (see below).

At hsc, a test is made to see if any points at all were seen in the course of the scan: if none, the program will cause, at hsj, the characters "nps" to be typed and will then transfer control back to the typewriter listening loop. If at least one point was found, the routine continues to hst, at which point begins a section to find the mean of the amplitudes of the points found. As an additional safeguard, the program causes the characters "nls" to be typed out — and returns to the typewriter listening loop — if no amplitude values are found in the table of amplitudes. The mean value when found is stored at p2m.

At location <u>rd</u>, the routine checks the position of sense switch 6 to see whether or not it is desired to redisplay the contents of the signal table. If not, control is transferred to location <u>bg</u>, but if so, the routine sets up a counter, <u>t3</u>, to control the number of times the display will be cycled. This number can be changed easily by

means of the octal corrector;* as assembled, it is ten (decimal). After displaying the trace this number of times, the routine checks sense switch 4 to see if the display should be held on the scope, i.e., whether or not the display should be recycled ten more times.

When and if sense switch 4 is off, control passes to location bg, the beginning of a routine which subtracts from each amplitude value measured the value of the average previously computed and stored at p2m.

This done, sense switch 1 is checked to see if the same trace should be rescanned: if yes, control passes back to e1; if no, the value of c (ym) is saved at pm and sense switch 3 is checked to see if the data for this trace should be recorded on tape.** The recording is done during the section which starts at ca, so that if the recording is to be suppressed, this section is skipped and control goes to location e.

At <u>ca</u>, the trace count, c(<u>pc</u>), is increased by one and then a checksum for the output record is computed by combining the contents of all of the registers of the output table (except the checksum itself) by an exclusive OR operation. This checksum is then stored at xyz in the output table.

This done, the length of the record to be written is computed and the calling sequence for the block-output routine is set up. This calling sequence consists of three instructions:

law A

ida 735

law B

where A is the address of the first register and B is the address of the last register of the output block. Flag 3 is then cleared, since it is used as an error indicator in the Fletcher Magtape Routines and could conceivably be set at this point.

^{*} Change $\underline{rd}+3$ from law i 12 = 710012 to law in = 7100XX, where XX is the (octal) number of cycles desired.

^{**} Note that sense switch 1 being set also suppresses recording by bypassing this section.

A check is then made of sense switch 5 to see whether the program is being used to read a block of n registers, n being a preset value stored at <u>nt</u>. If so, a check is made to see if n traces have been read yet, and if so, control is passed to the typewriter control routine at <u>ctl</u>. If neither of these, control passes to <u>e</u>, where the location of the next trace is estimated.

The trace just scanned passes through the point with coordinates: $c(\underline{x0})$, $c(\underline{pm})$. Location $\underline{mm0}$ contains the position of the preceding trace and $\underline{mm1}$ contains a (smoothed) estimate of the spacing between traces. Figure 6a shows the situation at the beginning of the computation. The equations used are:

$$c (\underline{mm1})_{new} = 7/8 c (\underline{mm1})_{old} + 1/8 c (\underline{pm}) - c (\underline{mm0})_{old}$$

$$c (\underline{mm0})_{new} = c (\underline{pm})$$

$$c (\underline{nwm}) = c (\underline{mm0})_{new} + c (\underline{mm1})_{new}$$

Figure 6b shows the situation after the computation.

The $c(\underline{nwm})$, i.e., the estimated location of the next trace, is checked against a pre-stored limit, $c(\underline{fap})$. If the next trace is expected to be below the limit – at $x = c(\underline{x0})$ – then control is passed to the film advance subroutine. This routine moves the film in such a way that the image on the CRT of a point on the film moves up.

When control returns from the film advance subroutine the corrected (in view of the film movement) estimate of the location of the next trace is in the accumulator. It is checked against the lower limit again and the film is advanced until the trace is expected to be above the limit. When this happens, control moves back to <u>e1</u> in order to scan the trace.

Fig. 6 Representation of parameter values before and after computation

LATERAL SCAN ROUTINE

write title - restart 3 feb 64

/write title

bgn, bcdtape

jsp 51 tbf tbf 50 -0 opr bintape dzm rc

dzm rc /record count
dzm pc /trace count
dzm rc /frame count
jmp pra

/restart

rst, rewind

lac rc space jmp pra

```
25 feb 64
 lateral scan routine
            lac mmO
pra,
            add mm1
            dac nwm
            lac xmn
sal 8s
                                     /store left-most x in output table
            dac xst
            lac xmx
                                     /compute length of output record
            sub xmn
            sar s
add (2
            add csz
            dac rsz
            dzm sc
e1,
            szf 1
            jmp ctb
lac nwm
            sal 5s
                                     /initialize vertical scan
            dac yo
            dac yf
dac ym
sar 8s
            add yvu
             dac yul
            sub yvu
sub yvd
dac yll
            law tbl
            dap scu
            110 (400000
            dio .
                                     /clear tables to nothing seen
scu,
             index scu, (dio tbe, scu
            law 1
dac nps
lac x0
hs,
            dac x
                                     /find trace to refine position
             jsp vs
             lac yf
            dac ym
sar 5s
             dac pm
                                     /should the same trace be repeated?
             szs 10
            jmp e2
isp sc
                                     /yes
/no
             jmp e
                                     /(-1) (number to skip + 1)
skn,
             law 1 1
            dac sc
```

```
e2,
              lac yf
sar 8s
             add yvu
dac yul
sub yvu
              sub yvd
              dac yll
              jsp vs
law 2
hsa,
                                         /right
              add x
              dac x
              sas xmx
              Jmp hsa
hsb,
              lac x0
                                         /reset to go left
              dac x
              lac ym
              dac yf
              law 1 2
add x
hsl,
                                         /left
              dac x
              jsp vs
              lac x
              sas xmn
              Jmp hsl
                                         /done
hsc,
              lac nps
              sza
                                         /anything seen?
              jmp hsj
                                         /no, complain
hst,
              init hs1, tba
dzm t1_
                                         /calculate average as first /approximation to baseline
              dzm p1m
hs1,
              lac
              sad (400000
              jmp hs1
              sar 8s
add p1m
              dac p1m
              1dx t1
              index hs1, (lac tbe, hs1
lio (flex nls
hs1,
              lac t1
              sza 1
              Jmp erp
```

```
lio p1m
             cla
             spi
             clc
             scl 1s
             dis t1
             hlt
             dac p2m
rd,
             szs 1 60
             jmp bg
setup t3, 12
rd9,
             init rd1, tba
                                 /redisplay signal
             lac rd1
sub (lac tba
rdo,
             sal s
             add xmn
             sal 8s
             dac t1
rd1,
             lac
             sad (400000
             jmp rd2
             swap
             lac t1
             dpy-1
rd2,
             idx rd1
             sas (lac tbe
             jmp rd0
isp t3
             Jmp rd9
szs 40
             jmp rd
bg,
             init bn, tba
bn,
             lac
             sad (400000
             jmp bni
sar 8s
             sub p2m sal 8s
                                      /normalize signal
             dac i bn
bni,
             index bn, (lac tbe, bn
dun,
             szs 10
                                      /should the same trace be repeated?
                                      /yes
/no
             jmp e1
             lac ym
            sar 5s
dac pm
szs 30
                                      /should the data be recorded?
             Jmp e
                                      /no
```

```
ca,
           idx pc
                                  /yes - index trace counter
           dzm xyz
                                  /store zero in checksum register
            dzm ch
            law pc
                                  /set up to compute checksum
           dap csm
add rsz
           dap pnd
                                  /get an entry
csm,
           lac
           xor ch
                                  /compute checksum
           dac ch
            idx csm
           sas pnd
                                  /done the whole record?
            jmp csm
                                  /no
           lac ch
                                  /yes - store the checksum
           dac xyz
           law pc
           add rsz
           sub (1
           dap . 3
           law pc
                                  /record data on tape
            Jda 735
           law
           clf 3
           szs 1 50
                                  /reading a block of n traces?
           .jmp e
           lac pc
sub nt
                                  /yes
                                  /read n traces?
           sma
           jmp ctl
                                  /yes
                                  /no - estimate new median
e,
           lac pm
           sub mmO
           sar 3s
           dac E2
           lac mm1
           sar 3s
           cma
           add mm1
           add t2
           dac mm1
           lac pm
           dac mmO
                                  /constant velocity assumed
           add mm1
           dac nwm
                                  /best guess for new median
ea,
           sub fap
                                  /frame advance point
           sma
            jmp e1
jsp cff
            Jmp ea
hsj,
           clf 6
           lio (flex nps
           Jmp erp
```

8. Film Advance Subroutine

When, following the scanning of a trace, it is determined that the next trace will be "out of sight", i.e., the computed location at which scanning should start is below the preset lower limit, control is shifted to the film advance subroutine to move the film up and bring the next trace into view.

The routine begins at $\underline{\mathrm{cff}}$ and, after saving the return address, checks sense switch 2 to see whether or not it is desired to reprocess the traces in view rather than advance the film. If it is, control jumps to location $\underline{\mathrm{cfh}}$ where the values of $c \, (\underline{\mathrm{mm0}})$, $c \, (\underline{\mathrm{mm1}})$ and $c \, (\underline{\mathrm{mm2}})$ computed during the last running of the initial position calculation routine are restored. Thus, the lateral scan routine will repeat the scan of the traces in view if the film has not been advanced since the last run of the initial position calculation routine, or if the values of $c \, (\underline{\mathrm{mm0}}) \, c \, (\underline{\mathrm{mm1}})$ are by coincidence appropriate to the current configuration. If the film is to be advanced, the x and y coordinates of the last trace are stored and then the film advance motor is turned on by setting program flag 6 to 1.

As described earlier, there is, on the shaft of the film advance motor, a cammicroswitch combination whose status may be determined by the computer (see Fig. 7). The film advance routine repeatedly checks the micro-switch position by executing the

Fig. 7 Cam-microswitch combination

iot 11 instruction and examining the IO register until it sees the sequence "off-on-off" or "on-off", whereupon it stops the film advance motor by clearing program flag 6. Between each interrogation of the microswitch, control is passed to another subroutine—the trace following subroutine, to be described below—to locate and record the position of the moving trace. A counter, <u>frc</u>, is used to keep trace of the number of times the motor is turned on and off.

When the film has stopped moving and the motor has stopped turning, the routine selects the last known position of the trace, $c(\underline{yf})$, and initiates a single vertical scan in its vicinity. The newly computed trace position replaces the previous $c(\underline{yf})$.

The distance the film moved can then be computed as

$$c(fav) = c(yf) - c(ym)$$

where \underline{ym} will contain the y-coordinate of the trace before the film was moved. This amount is used to update the contents of $\underline{mm0}$ and \underline{nwm} , and control is returned to the main program.

The trace following subroutine is a closed subroutine called at <u>cfa</u> and <u>cf1</u> which keeps track of the location of the trace last read while the film is being advanced. The routine begins, after it has checked to see if a typewriter key has been struck, by setting up the upper limit of the scan - to $c(\underline{yf})+c(\underline{k2})$ – and setting the threshold to 5/13.

The plan is to display a band of points - 13 points wide - starting below the trace and extending vertically until the trace is found (see Fig. 8) The program is able to display the band so fast that it can easily keep up with the advancing trace. The scan begins at a preset value, c (yvd), below the current location of the trace, c (yf), and continues up until the trace is located or the upper limit is reached. The criterion for finding the trace is seeing 5 out of 13 points displayed. If the trace is not found, the threshold is reduced successively to 4, 3, 2, and 1 point and if it is not found at this last threshold value, control is transferred to hsj, where "nps" is typed out and control goes to the typewriter listening loop. (Note that flag 6 is cleared there as part of the cla cli 7-opr instruction - hence, the motor is stopped.)

Normally, the routine finds the trace, puts its location in \underline{yf} , clears the IO register and interrogates the microswitch (by executing iot 11) and transfers control back to the film advance subroutine proper.

Fig. 8 Operation of trace following subroutine


```
film advance subroutine 25 feb 64
cff,
             dap cfx
                                       /change film frame
             szs 20
             jmp cfh
             lac ym
             dac yf
lac k1
                                       /set to follow last trace
             dac x stf 6
                                       /motor on
cfb,
             cli
             1ot 11
ril 4s
             sp1 1
             Jmp cf1
cfa,
             jsp cfj
             spi
             jmp cfa
cf1,
             jsp cfj
             spi i
             jmp cf1
             clf 6
                                       /motor off
             idx frc
             lac yf
sar 8s
             add yvu
             dac yul
sub yvu
sub yvd
             dac yll
             jsp vs
lac yf
sub ym
sar 5s
                                       /locate advanced trace
             dac fav
                                       /amount of advance
             add mmO
             dac mmO
             lac yf dac ym
             lac nwm
             add fav
             dac nwm
cfx,
             jmp .
             dap cfy
szf 1
cfj,
             jmp ctb
             sal 8s
             add yf
             dac yul
                                       /set up limits
```

```
cfk,
             init cfz, 5
             lac yvd
sal 8s
             cma
             add yf
             swap
dzm t1
cfp,
                                     /follow moving trace
             setup ch, 13 add (5
cfu,
             sal is
             add k1
sal 8s
clf 3
             dpy
             szf 3
idx t1
                                      /count points seen
             isp ch
             jmp cfu
cfz,
             law i
                                      /threshold
             add t1
             sma
             jmp cfq
             swap
             add (1000
             sas yul
             jmp cfp
law 1 1
cf9,
             add cfz
             dap cfz
             sas cf9
             jmp cfk+2
jmp hsj
                                     /try again with lower threshold
            dio yf
                                     /trace found
cfq,
             cli
            iot 11
ril 4s
                                      /interrogate microswitch
cfy,
             jmp .
cfh,
             lac mt2
             dac mm2
            lac mt1
            dac mm1
                                     /dummy frame advance
             lac mt0
            dac mmO
            add mm1
            dac nwm
             Jmp cfx
```

9. Octal Print Subroutine

The octal print subroutine is entered by executing a jda (Jump and Deposit Accumulator) instruction with a number up to six octal digits long in the AC. This number is then typed out by the typewriter with leading zeros suppressed. If the number is negative, it is typed out in the octal equivalent of ones complement form. If the AC is clear when the routine is entered, a single zero is typed.

octal print subroutine 16 jan 64

```
opt,
                0
               dap opx
law 1 6
               dac ch
clf 1
lio opt
op1,
               cla
                rcl 3s
                dio opt
               sza
stf 1
sza i
               law 20
               rcr 9s
               rer 9s
szf 1
                tyo
                isp ch
                jmp op1
szf 1 1
                tyo
opx,
                jmp .
```

10. Vertical Scan Subroutine

At various points in the program, control is transferred to the vertical scan subroutine for the purpose of locating a trace at a given x-location and between given y-limits. The most important points of reference are at <u>hsa</u> and <u>hsl</u> + 3 in the lateral scan routine, where the x-value is incremented to the left and right to take amplitude samples across the trace.

The routine begins by storing the current x-location and clearing the so-called "phase indicator" (flag 5). This flag will be set to 1 if and when a point is seen by the reader. Until the flag is set, the routine is said to be in phase 1, and after it is set, in phase 2.

The diagram in Fig. 9 is a representation of the search pattern to be described below. The series of points shown has been expanded in the x direction to make clear the order in which they would be displayed. Actually, all of the points would fall in a single vertical line.

In phase 1, the point being displayed is imaged onto the background of the film and the routine searches for the trace. It does this by displaying a series of points starting at x = c(x), y = c(yf) and continuing at x = c(x) and y = c(yf) + 2n(n = 1, 2, 3, ...).

Fig. 9 Representation of search pattern

The actual sequence is $c(\underline{yf})$, $c(\underline{yf})+2$, $c(\underline{yf})-2$, $c(\underline{yf})+4$, $c(\underline{yf})-4$,..., This continues until:

- (i) the upper limit is reached, in which case only the points y = c(yf) 2n are displayed, or
- (ii) the lower limit is reached, in which case only the points y = c(yf)+2n are displayed, or
- (iii) a point is seen, in which case the routine enters phase 2.

If both (i) and (ii) occur before (iii) occurs, control passes back to the main program with flag 5 = 0.

If and when phase 2 is entered, the display of points is resumed in a manner similar to phase 1. The upper and lower limits, however, are determined differently. The outputs of two "filters" are computed; one for the points $y = c(\underline{y}\underline{f}) + 2n$ starting at $\underline{v}\underline{s}\underline{f}$ and one for the points $y = c(\underline{y}\underline{f}) - 2n$ starting at $\underline{v}\underline{s}\underline{f}$. The respective outputs are $\underline{f}\underline{f}$ (chu) and \underline{f} (chd) and the functions are:

$$c \left(\underline{\text{chu}}\right)_{0} = 400_{8}$$

$$c \left(\underline{\text{chd}}\right)_{0} = 400_{8}$$

$$c \left(\underline{\text{chu}}\right)_{i} = \frac{v_{i} + c \left(\underline{\text{chu}}\right)_{i-1}}{2}$$

$$c \left(\underline{\text{chd}}\right)_{i} = \frac{v_{i} + c \left(\underline{\text{chd}}\right)_{i-1}}{2}$$

where
$$v_i = \begin{cases} 1000_8 \\ 0 \text{ otherwise} \end{cases}$$

As each point is stored, its y coordinate is stored as a possible value for the upper or lower edge of the trace. The edges are taken to be the values of \underline{y} f last stored when the corresponding filter function falls below the threshold, $c(\underline{t}\underline{h})$. (This value is currently set at 160_8 .)

When both upper and lower edges of the trace have been found, the position in the output table where this sample is to be stored is computed. The value stored is the y-coordinate half-way between the upper and lower edges of the trace. Control then passes to the main program.

RADAR SCAN VERTICAL SCAN SUBROUTINE


```
radar scan vertical scan subroutine 7 feb 64
vs,
             dap vsx
             lac x
             sal 8s
             dac xp
             clf 5
                                        /phase indicator
             law 400
vs1,
             dac chu
dac chd
             lac yf
             dac yu
sar 8s
dac yd
sar 1s
                                        /set up limits
             dac y
             setup ydl, 1
             clf 2
clf 4
                                        /lower boundary indicator /upper boundary indicator
             idx ydl
                                        /down
vsa,
             cma cli-opr
             add y
             dac y
szf 2
             Jmp vsu
                                        /if down scan done
             lio y
             sil 9s
             lac xp
             dpy
             szf 5
             jmp vsp
szf 3
jmp vsq
                                        /phase 1 - find any point
             lac y
             sal 1s
             sub yll
             spa
             stf 2
                                        /lower boundary reached
              Jmp vsu
vsq,
                                        /point found, enter phase 2 /to find limits
             stf 5
             dzm nps
             dio yf
              jmp vs1
```

```
/phase 2
vsp,
              cla 12
              szf 3
law 1000
              add chd
              sar 1s
              dac chd
              sub th
              spa
              jmp vsu
clf 2
sir 8s
                                        /below threshold, downward search done /above threshold, continue
              dio yd
vsu,
              1dx ydl
                                        /up
              add y
              dac y
              jmp vsc
                                       /if up scan done
             lio y
sil 9s
lac xp
clf 3
              dpy
              szf 5
             jmp vsr
szf 3
jmp vsq
                                        /phase 1 continued
              lac y sal 1s
              sub yul
              s ma
              stf 4
                                        /upper boundary reached
              jmp vsc
             cla 14
szf 3
law 1000
vsr,
                                        /phase 2
              add chu
              sar 1s
              dac chu
sub th
              spa
              Jmp vsc
                                        /below threshold, upward search done
              clf 4
                                        /above threshold, continue
              dio yu
```

```
vsc, szf 2
szf 1 4
jmp vsa /if not done
szf 1 5
jmp vsx /never entered phase 2, no points seen
dzm nps
lac x /record position of trace
sub xmn
sar s
add (tbl
dap vss
lac yu
sar 8s
add yd
sal 7s
dac yf
vss, dac .

vsx, jmp .
```

11. End Routine

When the character "e" is typed, the typewriter control routine passes control to the end routine at end, where two end-of-file marks are written and the magnetic tape is rewound. Control then returns to ctl.

12. Advance Film Routine

The character "a" causes control to pass to <u>adv</u>, where the film advance motor is turned on by setting flag 6. The motor will continue to run until sense switch 6 is set to zero. Thus, if it is desired to advance the film, say between calibration sections, ss #6 is set to 1 and "a" is typed. When ss #6 is set to 0, flag 6 is cleared — the motor is turned off, the trace count is set to zero, and an end-of-file is written on the tape, and control is returned to <u>ctl</u>.

3-PA-2179

end Write end of file Write end of file Rewind tape

FILM-MOVING ROUTINE


```
end - move film 3 feb 64
/end
                weof
end,
                weof
                rewind
                jmp ctl
/advance film between calibration readings
/runs motor as long as ss6 is up - stops motor, stores zero in /trace count, writes end of file and returns to listening loop / when ss6 is put down
                                              /turn on film advance motor
/finished?
adv,
                stf 6
                szs 60
                jmp .-1
clf 6
                                              /no
                                              /yes
                dzm pc
weof
                jmp ctl
```

13. Block Output Routine

Output from the program is onto magnetic tape through the Type 51 control which requires character-by-character reading and writing. In order to get a tape in standard IBM format, use is made of a group of subroutines called the "Fletcher Routines".*

The block output routine serves to produce from a simple calling sequence:

law A

jda 735

law B,

where A is the first address and B the last address of a block of registers to be written on tape, a fairly complex response, namely, to write the record on tape, check it in reverse, and check it forward. In case of error, the routine rewrites and checks reverse and forward until a total of five write-checks have been made unsuccessfully, whereupon it causes the characters "5 bad" to be typed and halts. Pressing Continue will cause another try of five write-checks.

^{*} Available as DECUS No. 33 BBN-1011c Scatter Gather Mag Tape Routine in the DECAL language. Used here in a translation to MACRO, (see Appendix B).


```
block output routine 24 jan 64
735/
mag,
            dap mgo
                                    /set up return address -1
            dap gtl
                                    /set up to get last address
                                   /set up return address
            idx mgo
            xct .
gtl,
                                   /get last address of block
            dac mkO
                                    /set up calling sequences
            add (1
            dac mk1
            dac mk2
            lac mag
            dac du1
            dac du2
            sub (1
            dac du0
            dzm bdr
                                    /put zero in counter
                                    /gwmf
            Jsp 51
wrg,
du1,
                                    /first address of block
            0
                                    /last address +1 of block
mk1,
            777777
            jsp 201
                                    /scmr
                                    /last address of block
mkO,
du0,
            0
                                    /first address -1 of block
            777777
                                    /parity or miss error /normal return
            jmp wgr
skp 600
                                    /check error
            jmp wgr
             Jsp 220
                                    /scmf
/first address of block
du2,
            0
                                    /last address +1 of block
mk2,
            777777
                                    /parity or miss error
/normal return-return to program
/check error
            Jmp wgf
mgo,
            jmp .
            Jmp wgf
            idx bdr
                                    /index counter
wgr,
                                    /done 5 write-checks?
            sad (5
                                    /yes
            Jmp bty
            Jsp 14
777776
                                    /no-space back one
            jsp 14
                                    /space forward one
            jmp wrg
```

```
bty, lio (000577 /type "5 bad"

tyo

rir 6s

tyo

lio (646162

tyo

rir 6s

tyo

rir 6s

tyo

hlt

dzm bdr

jmp wgr 3

wgf, Jsp 14

777776

Jmp wgr

start
```

14. Output Format

A single record is written on magnetic tape in the BCD mode, when the character "g" is typed on the typewriter. This record of 120 characters is made up of the contents of a table, <u>tbf</u>, set up by the titling routine. The remainder of the records on the tape are in the binary mode and are in the following format, one per trace read.

Each data word has the following format:

The amplitude values are to be interpreted as ones-complement numbers. In case no point was seen, the whole word will contain the number 400000_8 (which is equivalent to -511_{40}).

```
constants and temporary storage 7 feb 64
```

lac

```
/endcheck
pnd,
                               /medial location
/first difference
mmO,
            0
mm1,
            0
mm2,
            0
                               /second difference
nwm,
            0
                               /new median
            6000
fmx,
                               /max y on this frame
            14000
fht,
                               /height of one frame...2xfmx
            3640
fav,
            -4000
fap,
                               /film advance y-coordinate
x0,
            0
х,
            0
            0
yo,
            0
у,
            160
th,
xmn,
            -240
                               /minimum x
            240
xmx,
                               /maximum x
                               /y lower limit
/y upper limit
/max expected ht above average
yll,
            0
yul,
            0
            150
yvu,
yvd,
            40
                               /max expected ht below average
yf,
            0
                               /last y found
                               /film advance x coordinate
k1,
            0
k2,
            40C
                               /max expected ht for film advance
variables
constants
                               /trace counter
            0
pc,
rsz,
            0
                               /record size
csz,
            10
                               /control section size
xst,
                               /x-coordinate of leftmost sample
            0
tl1,
            0
                               /spares
t12,
            0
t13,
            0
xyz,
tba,tbl,
            0
                               /checksum
            tba 1000/
                               /signal table
tbe,
            tbe 1/
obl,
start beg
```

B. Series 1a

The modification to the Series 1 program to read traces of inverted orientation consists of:

- the insertion of one instruction into the lateral scan routine, viz., a cma between <u>bn</u>+5 and <u>bn</u>+6 - the effect of this instruction is to change the amplitude measured downward to positive and upward to negative;
- (ii) in the film advance subroutine, the replacement of lac <u>yvd</u> by a lac <u>k3</u> at <u>cfk+2</u> this has the effect of allowing the trace following routine to follow the trace closely rather than from the bottom edge of the now extensive scanning area (see Fig. 10); and
- (iii) the addition of the constant $\underline{k3}$ to the list of constants.

Fig. 10 Trace following

C. Series 2

The program to read film whose traces have a fiducial mark must provide, in addition to all of the routines of the earlier Series 1 program, a routine to locate the fiducial marks and must provide for reading the positions of the marks and computing the amplitudes of the traces with respect to them

The fiducial marks are located by the use of the macroscope w/reference marks routine, and their location is recorded by use of the fiducial marks location calculation routine. The latter routine is entered by typing "f" when the program is in the typewriter control loop. (The addition of the character "f" to the dispatch table is the only difference between the Series 2 typewriter control program and the earlier versions.)

1. Macroscope w/Reference Lines

As implied by its name, this routine is the earlier macroscope with an addition which generates reference lines. These lines are coordinated with the macroscope redisplay in such a way that if a point in the redisplay area is chosen, the corresponding point in the raster may be determined.

When the character "m" is typed with sense switch 5 set to zero, the routine behaves as previously described until the sixteen partial rasters have been displayed, whereupon, at ma-5, it sets up and displays a horizontal and a vertical line through the origin. These lines are displayed after every complete raster cycle of the main macroscope routine. If sense switch 5 is set to one, the program interprets the test word switches as the x-coordinate of an x=constant line and the y-coordinate of a y=constant line: x controlled by positions 0-8 and y by positions 9-17.

When, thereafter, a typewriter character is struck, the program will cause these coordinates to be typed out in the form

where m and n are octal 7's complement integers. These numbers are the coordinates

Fig. 11 Macroscope w/reference lines format

of the point in the raster corresponding to the point in the redisplay chosen. That is, if in Fig. 11, the point P_1 is the intersection of the reference lines, the coordinates of P_2 , the corresponding point in the raster will be typed out. This number is also stored for use in the fiducial marks position calculation routine.

Setting sense switch 5 back to zero before typing a character returns the routine to its earlier state where the contents of the test word are interpreted as the coordinates of the raster.


```
macroscope w/ reference lines 12 jan 64
              lat
a,
              dac mxy
b,
              cl1 7
              lac mxy
              rcr 9s
ral 9s
sar 1s
                                         /y to 10
              sub (200000+1000
              dac 1\bar{x}0
              add (400000
              dac 1x1
add (4000
                                         /set up boundaries
              dac 1xm
              swap
              sar 1s
              dac E
              repeat 3, sar 2s
sub (125000+1000
dac y00
add (250000
                                         add t
              dac y11
add (4000
dac ymx
              lac t
              110 (-251777
              spa
              lio (252000
dio vr
              law 1000
                                         /horizontal interlace
h,
              add 1x1
              dac 1x1
              xct h
              add 1x0
              dac 1x0
              lac y11
dac 1y1
              lac y00 dac 1y0
                                          /vertical interlace
              xct h
J,
              add 1y1
              dac 1y1
xct h
              add 1y0
              dac 1y0
```

```
swap
k,
             lac 1x0
l,
             dpy
             szf 3
              jmp r
             add (4000
11,
                                       /horizontal sweep
             sas ix1
              jmp 1
m,
             dac t
             swap
             add (4000
sas 1y1
                                       /vertical sweep
              Jmp k
             sas ymx
             jmp j
szf 1
             jmp mc
lac t
             sas 1xm
             jmp h
law i 2
dac t4
                                       /number of times to cycle lines
             cla
             szs 50
                                       /move reference lines?
             lat
                                       /yes
             dac pxy
                                       /no
ma2,
             lac pxy
                                       /set up x = constant line
             and (777000
lio (400000
             Jmp ma1
ma,
             swap
ma1,
             dpy
             swap
add (1000
sas (400001
                                       /increment y
                                       /reached top of scope?
             Jmp ma
                                       /no
             cli
                                       /yes - set up y = constant line
             lac pxy and (777
             rcr 9s
lac (400000
             dpy
add (1000
sas (400001
mb,
                                       /increment x
                                       /reached edge of scope?
                                       /no
             Jmp mb
             isp t4
             jmp ma2
             szs 50
jmp b
             Jmp a
```

```
lio (772736
ril 6s
mc,
             tyo
                                       /carriage return
             ril 6s
                                       /x
             tyo
             ril 6s
             tyo
                                       /tab
             lac pxy
             sar 9s
dac xh1
sal s
                                       /print x-coordinate
             jda opt
             lio (773036
ril 6s
                                       /carriage return
             tyo
             ril 6s
             tyo
                                       /у
             ril 6s
                                       /tab
             tyo
             lac pxy
and (777
             ral 9s
             spa
             1or (777
             sub vr
             dac xh2
             sar 8s
             jda opt
                                       /print y-coordinate
             lac xh1
             lio xh2
             rcl 9s
dac lxy
                                       /return to listening loop
             jmp ctl
r,
             dio t
                                       /point seen
             swap
             add vr
                                       /vertical relocation
              swap
             dpy
clf 3
             lio t
             jmp 11
                                       /x and y for raster
/x and y for reference lines
/x and y for output
mxy,
             0
pxy,
lxy,
             0
```

2. Fiducial Marks Position Calculation Routine

This short routine is entered when the character "f" is typed. It takes the stored value of the coordinates of the center of the fiducial mark, unpacks them and stores the results in the proper form for use by the lateral scan routine, the vertical scan subroutine and the film advance subroutine.

3-PA-2182
FIDUCIAL MARKS POSITION CALCULATION

fiducial marks position calculation 20 mar 64

```
f, lac lxy /record fiducial coordinates sar 9s sal s dac fl\overline{x} lac lxy and (777 ral 9s spa lor (377 rar 8s dac fl\overline{y} Jmp ctl
```

3. Lateral Scan Routine

For traces with fiducial marks, some provision must be made in the lateral scan routine to read the marks and store the measured amplitudes. For this purpose, a table of 75₈ registers is saved starting at register fdl by a 'dimension' pseudo-operation at the beginning of the routine. During each pass through the main loop of this routine, i.e., just before each new trace is scanned, the table is cleared by storing in each register the "no point seen" symbol, 400000. This is done by a group of instructions starting at scy-2 and extending to, but not including hs.

Following the seven instructions at $\underline{e2}$ which set up the upper and lower limits for the scan, new instructions are inserted $-\underline{fsl}$ to, but not including, \underline{hsa} — to read the fiducial mark. First an indicator is set to show the vertical scan subroutine that the fiducial mark is being read and then coordinates and limits are set up. The routine assumes that the x-coordinate corresponding to the center of the trace is given — $c(\underline{flx})$ — as well as the half-width of the mark — $c(\underline{dlf})$. The routine will scan from the (computed) left edge of the mark to the (computed) right edge. When the scanning is finished, the indicator is reset and x and y coordinates restored.

The remainder of the routine is the same as the Series 1 coding except that the value used to normalize the trace amplitudes, c(p2m), is the average of the fiducial mark amplitudes rather than of the trace amplitudes.* This requires a change of two instructions: one at <u>hst</u> and one at <u>hsi</u>. The average computed is stored also at <u>ym</u> for use in the film advance subroutine.

^{*} That is, the amplitudes recorded by the Series 1 program are measured with respect to the average of all trace amplitudes (see p.44) while the Series 2 and 3 programs recorded amplitudes measured with respect to the average of the fiducial mark amplitudes, which is itself a measure of the noise level.

3-PA-2183

CHANGES TO LATERAL SCAN ROUTINE®

^{*}These boxes replace box e2 in the Series 1 diagram (p. 48).

C22-1357

```
lateral scan routine 25 mar 64
dimension fdl(75)
pra,
           lac mm0
           add mm1
           dac nwm
           lac xmn
sal 8s
                                  /store left-most x in output table
           dac xst
           lac xmx
                                  /compute length of output record
           sub xmn
           sar s
           add (2
           add csz
           dac rsz
           dzm sc
           szf 1
e1,
            jmp ctb
           lac nwm
           sal 5s
                                  /initialize vertical scan
           dac yo
           dac yf
           dac ym
sar 8s
           add yvu
           dac yul
sub yvu
           sub yvd
           dac yll
           law tbl
           dap scu
           110 (400000
                                  /clear tables to nothing seen
           dio .
scu,
           index scu, (dio tbe, scu
           law fdl
           dap scy
scy,
           dio .
           index scy, (dio fdl 75, scy
```

```
hs,
             law 1
             dac nps
             lac x0
             dac x
             Jsp vs
                                      /find trace to refine position
             lac yf
             dac ym
sar 5s
dac pm
             szs 10
                                      /should the same trace be repeated?
                                      /yes
/no
             Jmp e2
             1sp sc
             jmp e
law 1 1
skn,
                                      /(-1) (number to skip + 1)
             dac sc
             lac yf
sar 8s
e2,
             add yvu
             dac yul
             sub yvu
             sub yvd
             dac yll
law 1
dac sin
fs1,
                                      /set to read fiducial marks
             lac flx
                                      /set up coordinates and limits
             add dlf
             dac fmn
lac flx
             sub dlf
             dac x
             lac yo
sal 8s
             dac yf
fl1,
             Jsp vs
                                      /read mark
             law 2
             add x
             dac x
sas fmn
             jmp fl1
             dzm sin
                                      /set to read trace
             lac y0
dac yf
lac x0
             dac x
hsa,
             jsp vs
             law 2
                                      /right
             add x
             dac x
             sas xmx
             jmp hsa
```

```
lac x0
                                      /reset to go left
hsb,
             dac x
             lac ym
             dac yf
             law 1 2
                                      /left
hsl,
             add x
             dac x
             jsp vs
             lac x
             sas xmn
             jmp hsl
                                      /done
hsc,
             lac nps
                                      /anything seen?
             sza
             jmp hsj
                                      /no, complain
             init_hs1, fdl dzm t1_
                                      /calculate average of fiducial marks
hst,
             dzm p1m
hs1,
             lac
             sad (400000
             jmp hsi
sar 8s
             add p1m
             dac p1m
idx t1
             index hs1, (lac fdl 75, hs1
lio (flex nls
hsi,
             lac t1
             sza 1
             jmp erp
lio p1m
             cla
             spi
             clc
             scl 1s
             dis t1
             hlt
             dac p2m
sal 8s
dac ym
             szs 1 60
rd,
             jmp bg_
setup t3, 12
                                      /redisplay signal
rd9,
             init rd1, tba
```

```
rdO.
              lac rd1
              sub (lac tba
              sal s
              add xmn
sal 8s
              dac t1
rd1,
              lac
              sad (400000
              jmp rd2
              swap
              lac t1
              dpy-1
              idx rd1
sas (lac tbe
jmp rd0
rd2,
              isp t3
                                         /displayed ten times?
              jmp rd9
                                         /no
              szs 40
                                         /yes - hold the display?
              Jmp rd
                                         /yes
bg,
              init bn, tba
                                         /no - set up to normalize signal
bn,
              lac
              sad (400000
              jmp bni
              sar 8s
              \begin{array}{ccc} \text{sub} & \text{p2}\overline{\text{m}} \\ \text{sal} & 8\text{s} \end{array}
                                         /normalize signal
              dac i bn
              index bn, (lac tbe, bn
bni,
                                         /should the same trace be repeated?
dun.
              szs 10
              jmp e1
                                         /yes
             lac ym
sar 5s
dac pm
szs 30
                                         /no
                                         /should the data be recorded?
              jmp e
                                         /no
                                         /yes - index trace counter
              1dx pc
ca,
                                         /store zero in checksum register
              dzm xyz
              dzm ch
                                         /set up to compute checksum
              law pc
             dap csm
add rsz
              dap pnd
```

```
/get an entry
/compute checksum
csm,
            lac
            xor ch
            dac ch
            idx csm
            sas pnd
                                    /done the whole record?
                                    /no
            jmp csm
            lac ch
                                    /yes - store checksum
            dac xyz
            law pc
            add rsz
            sub (1
            dap . 3
            law pc
jda 735
                                    /record data on tape
            law
            clf 3
            szs 1 50
                                    /reading a block of n traces?
            jmp e
lac pc
sub nt
                                    /no
                                    /yes
                                    /read n traces?
            sma
            jmp ctl
                                    /yes
            lac pm
                                    /no - estimate new median
e,
            sub mmO
            sar 3s
dac t2
            lac mm1
sar 3s
            cma
            add mm1
            add t2
            dac mm1
            lac pm
            dac mmO
                                    /constant velocity assumed
            add mm1
            dac nwm
                                    /best guess for new median
ea,
            sub fap
                                    /frame advance point
            sma
            jmp e1
            jsp cff
            Jmp ea
            clf 6
hsj,
            lio (flex nps
            Jmp erp
```

4. Film Advance Subroutine

This routine differs in only two instructions from the Series 1 routine: these move the film advance x-coordinate to the center of the fiducial mark. The instruction at $\underline{cff}+5$ becomes lac \underline{flx} and the one at $\underline{cfu}+2$ becomes add \underline{flx} .

5. Vertical Scan Subroutine

In this version of the program, the vertical scan subroutine has been changed slightly so that the amplitude measurements may be stored as either fiducial mark amplitudes in the table starting at fdl or as trace amplitudes in the table at tbl. This is done by checking, at vsc+6 and ff, an indicator, sin, set in the lateral scan routine. If it is a 1, then control passes to location vsf where the amplitudes are stored in the fiducial marks table; if it is a 0, the amplitude is stored in the signal table.

```
radar scan vertical scan subroutine 20 mar 64
/for traces with fiducial marks
```

```
VS,
             dap vsx
             lac x
             sal 8s
             dac xp
                                      /phase indicator
             law 400
vs1,
             dac chu
             dac chd
             lac yf
dac yu
sar 8s
                                     /set up limits
             dac yd
             sar 1s
             dac y
             setup ydl, 1
clf 2
clf 4
                                       /lower boundary indicator
                                      /upper boundary indicator
             1dx ydl
vsa,
                                      /down
             cma cli-opr
             add y
             dac y
szf 2
             jmp vsu
lio y
sil 9s
                                      /if down scan done
             lac xp
             clf 3
             dpy
szf 5
             jmp vsp
szf 3
                                      /phase 1 - find any point
             jmp vsq
             lac y sal 1s
             sub yll
             spa
             stf 2
                                      /lower boundary reached
             jmp vsu
                                      /point found, enter phase 2
/to find limits
             stf 5
vsq,
             dzm nps
             dio yf
             Jmp vs1
```

```
vsp,
             cla 12
                                       /phase 2
             szf 3
law 1000
add chd
             sar 1s
             dac chd
             sub th
             spa
             jmp vsu
clf 2
                                       /below threshold, downward search done /above threshold, continue
             sir 8s
             dio yd
vsu,
             idx ydl
                                       /up
             add y
             dac y
             jmp vsc
lio y
sil 9s
                                       /if up scan done
             lac xp
clf 3
             dpy
             szf 5
             jmp vsr
szf 3
jmp vsq
                                       /phase 1 continued
             lac y
             sal 1s
             sub yul
             sma
             stf 4
                                       /upper boundary reached
              jmp vsc
             cla 14
szf 3
law 1000
vsr,
                                       /phase 2
             add chu
             sar 1s
             dac chu
sub th
             spa
             jmp vsc
                                       /below threshold, upward search done
             clf 4
                                       /above threshold, continue
             dio yu
vsc,
             szf 2
             szf 1 4
             jmp vsa
szf i 5
                                       /if not done
              jmp vsx
                                        /never entered phase 2, no points seen
```

```
dzm nps
lac sin

lac x /record position of trace
sub xmn
sar s
add (tbl
dap vss

vst, lac yu
sar 8s
add yd
sal 7s
dac yf

vss, dac .

vsx, jmp .

vsf, lac x
sub flx
add dlf
sar s
add (fdl
dap vss
jmp vst
```

6. Constants and Temporary Storage

The list of constants differs by the addition of \underline{dlf} , defined as the fiducial mark half-width and the dropping of $\underline{k1}$, the film advance x-coordinate.

D. Series 2a

This program bears the same relation to the Series 2 program as the Series 1a does to the Series 1. The changes described in Sec. A apply here as well.

E. Series 3

The Series 3 film reading program differs in many ways from the earlier series: it advances film frame-by-frame, it reads two fiducial marks and it reads and records a set of timing lights — all this in addition to reading the usual A-scope trace. One frame of the film is sketched as Fig. 12.

Fig. 12 One frame of project radar film

The camera which takes these pictures is rigidly mounted if front of the scope, and hence the registration of that part of the display which is fixed, i.e., the timing lights and the nixie lights, is very stable. The position of the trace on the A-scope may vary, however, from film to film, and the relative positions of the film reader and Type 30 CRT may vary from day to day.* Thus, for each film, it will be necessary to determine the locations of the trace and the timing lights as the reading is begun; in order to make this possible, a new routine, the fiducial and timing marks position calculation routine, has been added. To call this routine, the character dispatch table of the typewriter control routine has been expanded by the addition of the characters "f" and "t".

^{*} While the Lincoln Laboratory reader is rigidly clamped so that there is a constant distance between reader and CRT, production versions of the reader with superior optics are made to allow this distance to be adjusted to suit the particular film being read.

- 1. Fiducial and Timing Marks Position Calculation
- a. <u>Fiducial Marks</u> This routine is used in conjunction with the macroscope w/reference lines already described. The cycle of operation is as follows: when the reference lines have been centered on the left fiducial mark, a carriage return is typed. The computer will print out the coordinates of the point in the raster corresponding to the intersection of the reference lines. Then the character "f" is typed; the computer will respond by executing a tab. Then, when the character "l" is typed by the operator, the coordinates of the point will be properly stored for use by the lateral scan, and other routines. The same sequence is followed for the right fiducial mark, with the last control character being an "r".

3-PA-2184

FIDUCIAL MARKS POSITION CALCULATION

fiducial and timing marks position calculation 20 mar 64

```
/fiducial marks
              lio (36
                                         /execute tab
ſ,
              tyo
              cla cli 7-opr
              szf i 1
jmp .-1
                                         /listen for typewriter
              cla cli 7-opr
              tyi
             rcr 6s
dac Tph
init f1, ftb
                                         /find out if l or r
f1,
              lac
              dap fx
              xor fx sad fph
              jmp i fx
              index f1, (lac fe, f1
              jmp err
ſx,
              char 11 fl
char 1r fr
ftb,
ſe,
                                         /record left fiducial coordinates
fl,
              lac lxy
             sar 9s
sal s
dac flx
              lac lxy
              and (777
              ral 9s
              spa
              ior (377 rar 8s
              dac Fly
             jmp ctl
lac lxy
sar 9s
fr,
                                         /record right fiducial coordinates
              sal s
              dac frx
             lac lxy
and (777
ral 9s
              spa
             ior (377
rar 8s
dac Try
              jmp ctl
```

b. <u>Timing Marks</u> In order for the computer to line up properly on the timing lights, it is necessary that it be apprised of the location of the lower left light and of the x- and y- spacing between lights just before the beginning of the run. The timing marks position calculation routine was written for that purpose.

Again, use is made of the macroscope w/reference lines routine. The reference lines are placed so as to cross over the center of one of the lights, whose position in the array is known. As before, a carriage return is typed to terminate that routine. Then, assuming the lower left light is in the first column, first row, the number of the column and number of row are typed followed by the character t: thus,

XXYYt

when XX is the two-digit octal number of the column and YY is the two-digit octal number of the row. For instance,

0702t

would be for the seventh column, second row.

The computer will type out a tab and wait in a listening loop for the operator to type a character. He should type a "1". When the computer has typed a carriage return, the operator must use macroscope w/reference lines again and move the reference lines so that they cross on a timing light in a different row and a different column from the first. He then types XXYYt as before and, after the tab, the character "2". The routine will then compute the positions of the timing lights and return to the typewriter control routine.

The algorithm used may be understood by referring to Fig. 13, which shows the positions of the images of the timing lights on the scope face. The timing lights reader subroutine will display a horizontal bar across each of the 42 positions and will consider the light to have been on if two or more points are seen by the reader. The routine needs to have available the coordinates of the lower left light and the spacing between the lights. (The actual coordinates computed are those of the left most spot of the bar used to read the lower left light.)

Fig. 13 Timing Lights.

The equations used are:

$$X = x_1 - (m_1 - 1) Dx - b$$

$$Y = y_1 - (n_1 - 1) Dy$$

where

X, Y = coordinates of left most spot of bar used to read lower left light,

 $\text{Dx,Dy} = \text{spacing between lights} = \frac{(x_2 - x_1)}{(m_2 - m_1)}, \frac{(y_2 - y_1)}{(n_2 - n_1)},$

 m_i , n_i = column and row numbers of timing light i, (i =1,2),

 x_i , y_i = coordinates of that light, and

b = integral part of one half of the length of the bar used to read each light = $\begin{bmatrix} \frac{1}{2} & c(12) \end{bmatrix}$.

The numbers m_1 , m_2 , n_1 , and n_2 are supplied by the operator through the typewriter as indicated, and the values x_1 , x_2 , y_1 , and y_2 are supplied by the macroscope w/reference lines routine (if the reference lines have been properly lined up). The number, b, is obtained from a constant stored in the timing lights reader subroutine.

TIMING MARKS POSITION CALCULATION


```
/timing marks
tmp,
            lac wrd
                                    /get mn word
            dac tmt
            110 (36
                                    /type out tab
            tyo
            cla cli 7-opr
            szf i 1
                                    /listen for typewriter
            jmp .-1
            cla cli 7-opr
            tyi
            rcr s
            sza 1
                                    /was the 2nd character a 1?
            jmp tp1
                                    /no
            lac lxy
                                    /yes - get xy word
            sar 9s
            sal s
            dac tx1
lac lxy
and (777
                                    /store x1
            ral 9s
            spa
            ior (377 rar 8s
            dac tyl
                                    /store y1
            lac tmt
            cli
            rcr 6s
            rir 6s
            rir 6s
            dac tm1
                                    /store m1
            dio tn1
                                    /store n1
            jmp ctl
lac lxy
                                    /return to typewriter control /get xy word
tp1,
            sar 9s
            sal s
            dac t\bar{x}2
                                    /store x2
            lac lxy and (777
            ral 9s
            spa
            ior (377 rar 8s
            dac ty2
                                    /store y2
            lac tmt
            cli
            rcr 6s
            rir 6s
            rir 6s
                                    /store m2
            dac tm2
            dio tn2
                                    /store n2
                                    /compute (m1-m2)
            lac tm1
            sub tm2
```

dac tmt

```
lac tx1
                       /compute (x1-x2)
sub tx2
swap
cla
spi
clc
scl s
dis tmt
                        /compute Dx
jmp err
ral 8s
                        /(m1-m2)=0
dac ux
                        /compute (n1-n2)
lac tn1
sub tn2
dac tmt
                        /compute (y1-y2)
lac ty1
sub ty2
swap
cla
sp1
clc
scl s
                        /compute Dy
dis tmt
jmp err
ral 8s
                        /(n1-n2)=0
dac uy
lac 12
                        /compute b
sar s
dac t1
                        /compute X
lac tm1
sub (1
mus ux
rcl 9s
rcl 8s
cma
add tx1
sub t1
ral 8s
dac xnb
                        /store X
lac ty1 ral 8s
dac tyi
lac tn1
sub (1
                        /compute Y
mus uy
rcl 9s
rcl 8s
cma
add ty1
dac yb
jmp ctl
                       /store Y
```

2. Lateral Scan Routine

There are two major differences between the lateral scan routines of the Series 1 and 3 programs: the latter has additional programming (1) to read the fiducial marks and (2) to redisplay the results of reading the timing lights.

Although there are two fiducial marks per trace to be read by this program, the logic used, from <u>fst</u> to <u>hsa</u>, is very similar to the routine in the Series 2 program already described. In this case, it is necessary to set up certain addresses depending on whether the left or right mark is being read, but the actual reading and the use of the indicator, <u>sin</u>, is the same. At <u>hst</u>, the readings of both marks are averaged to get the reference amplitude, from which the reported amplitudes are measured.

Earlier, at <u>hal</u>+7, immediately after the trace had been scanned, control was transferred to the timing lights reader subroutine to read the lights. Then, later on, after the trace has been redisplayed, a stretch of coding from <u>rl0</u> to <u>rd4</u> redisplays the results of reading the timing lights. The result of the reading of the lights are packed into three words in memory, as will be described below, and the coding here is merely an unpacking of these words and a display of points at the corresponding coordinate positions. The display then on the scope recreates very closely the picture on the film, except that the nixie lights and the fiducial marks are not displayed.

The remainder of the routine is the same as the earlier versions.

lateral scan routine 20 mar 64

dimension fdl(75), fdr(75)

```
pra,
            lac xmn
sal 8s
                                    /store left-most x in output table
            dac xst
            lac xmx
                                    /compute length of output record
            sub xmx
            sar s
            add (2
add csz
            dac rsz
            dzm sc
            lac fly
            dac p2m
e1,
            szf 1
            Jmp ctb
            lac p2m
sal 8s
                                    /initialize vertical scan
            dac y0
            dac yf
sar 8s
            add yvu
            dac yul
sub yvu
            sub yvd
            dac yll
            law tbl
            dap scu
            110 (400000
                                    /clear tables to nothing seen
scu,
            dio .
            index scu, (dio tbe, scu
            law fdl
            dap scy
            dio .
scy,
            index scy, (dio fdl 172, scy
            law <u>1</u> dac nps
hs,
            szs 10
                                    /should the same trace be repeated?
                                    /yes
            jmp fs1
            isp sc
                                    /no
            jmp e
law 1 1
                                    /(-1) (number to skip + 1)
skn,
            dac sc
```

```
fs1,
             law 1
                                      /set to read fiducial marks
             dac sin
fsl,
             law dlf
                                      /set for left mark
             dap vsg
law (fdl
             dap vsh
law flx
             dap vsj
lac flx
                                      /set up coordinates and limits
             add dlf
dac fmn
lac flx
             sub dlf
             dac x
             lac fly
sal 8s
             dac yf
jsp vs
f11,
                                      /read left mark
             law 2
             add x
             dac x
             sas fmn
jmp fl1
             law drf
                                     /set for right mark
             dap vsg
             law (fdr
             dap vsh
             law frx
             dap vsj
             lac frx
                                      /set up coordinates and limits
             add drf
             dac fmn
             lac frx
sub drf
             dac x
             lac fry
sal 8s
             dac yf
jsp vs
fr1,
                                     /read right mark
             law 2
             add x
             dac x
sas fmn
             jmp fr1
             dzm sin
                                     /set to read trace
             lac y0
             dac yf lac x0
             dac x
```

```
jsp vs
law 2
hsa,
            add x
                                     /right
            dac x
            sas xmx
            jmp hsa
hsb,
            lac x0
                                     /reset to go left
            dac x
            lac y0
dac yf
hsl,
            law 1 2
                                     /left
            add x
            dac x
jsp vs
            lac x
            sas xmn
            jmp hsl
            jsp q1
                                     /go read the timing lights
hsc,
            lac nps
                                     /done
                                     /anything seen?
            sza
                                     /no, complain
            jmp hsj
            init_hs1, fdl dzm t1_
hst,
                                     /calculate average of fiducial marks
            dzm p1m
hs1,
            lac
            sad (400000
            jmp hsi
            sar 8s
            add p1m
            dac p1m
idx t1
            index hs1, (lac fdl 172, hs1
lio (flex nls
hsi,
            lac t1
            sza 1
            jmp erp
            110 p1m
            cla
            spi
            clc
            scl 1s
            dis t1
            hlt
            dac p2m
```

```
szs 1 60
rd,
                 jmp bg
setup t3, 12
                 init rd1, tba
                                              /redisplay signal
rd9,
rdo,
                 lac rd1
                 sub (lac tba sal s
                 add xmn
                 sal 8s
                 dac t1
rd1,
                 lac
                 sad (400000
                 jmp rd2
                 swap
                 lac t1
                 dpy-1
                 idx rd1
sas (lac tbe
rd2,
                 jmp rd0
                 lac xnb
add (2000
dac Tux
                                                 /set up to redisplay timing lights
rlo,
                 dac Tax
                 dac Tex
                 lac yb
sub (2000
dac luy
dac Tay
                 dac ley
                 law \frac{1}{2} \frac{16}{2} \frac{16}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}
                 dac g3
law tl1 2
                 dap rl1
                                                 /get a timing light word
rl1,
                 lac
                 ral 3s
                 ral s
dac lsv
rlb,
                                                 /was a light seen?
                 sma
                 jmp rl3
                                                 /no
```

```
r12,
            lac lex
                                    /yes - set up coordinates
            lio ley
            dpy-i
dac lex
                                    /display the point
            swap
                                    /increment coordinates
            add (2000
            dac ley
            isp g3
                                    /displayed 5 points?
            jmp rl2
isp g1
                                    /no
/yes - done all lights in row?
/no
r13,
            Jmp rb1
                                    /yes - done all 3 rows?
            isp g2
             jmp rb2
                                    /yes
/set up to display next light
             Jmp rd4
rb1,
            lac lax
            add ux
            dac lax
            dac lex
            lac lay
            dac ley
            law 1 5
            dac g3
lac lsv
            Jmp rlb
rb2,
            lac rl1
                                    /set up to read next word
            sub (1
                                    /and display next row
            dap rl1
            lac lux
            dac lax
            dac lex
            lac luy
            add uy
            dac luy
dac lay
            dac ley
law 1 5
            dac g3
law 1 16
            dac g1
            jmp rl1
rd4,
            isp t3
                                    /displayed ten times?
            jmp rd9
                                    /no
            szs 40
                                    /yes - hold the display? /yes
            Jmp rd
bg,
            init bn, tba
                                    /no - set up to normalize signal
```

```
bn,
            lac
            sad (400000
            jmp bni
            sar 8s
            sub p2m sal 8s
                                   /normalize signal
            dac i bn
            index bn, (lac tbe, bn
bni,
dun.
            szs 10
                                    /should the same trace be repeated?
            Jmp e1
                                   /yes
            szs 30
                                   /no - should the data be recorded?
            Jmp e
                                   /no
ca,
            idx pc
                                   /yes - index trace counter
            dzm xyz
                                   /store zero in checksum register
            dzm ch
            law pc
                                   /set up to compute checksum
            dap csm
            add rsz
            dap pnd
                                   /get an entry
/compute checksum
csm,
            lac
            xor ch
            idx csm
            sas pnd
                                   /done the whole record?
            jmp csm
                                   /no
            lac ch
                                   /yes - store checksum
            dac xyz
            law pc
            add rsz
sub (1
            dap . 3 law pc
                                   /record data on tape
            Jda 735
            law
            clf 3
szs i 50
                                   /reading a block of n traces?
            jmp e
                                   /no
            lac pc
sub nt
                                   /yes
                                   /read n traces?
            sma
            imp ctl
                                   /yes
            jsp cff
                                   /no - go advance the film
e,
            jmp e1
hsj,
            clf 6
            lio (flex nps
            jmp erp
```

3. Film Advance Subroutine

Since the project radar film is framed, the position of the image of the trace on the scope will always be the same. Therefore, the film advance subroutine is very simple. At <u>cfb</u>, the motor is turned on by setting flag 6; the microswitch is then interrogated as before until the motor has made one revolution, and when it has, the motor is turned off.

The routine then enters a delay loop for about 60 milliseconds to allow for the decay of transients in the control lines. The motor is then turned on again until it has made one more revolution, so that the film will have been advanced a total of four sprocket holes, or one frame.

Note that there is no provision here for a dummy advance; since one trace is read per film advance, repeating the same trace is equivalent to reading all traces in view. Hence, sense switch 2 is not used in this version of the program.

film advance subroutine 8 jan 64

```
/for framed film
              dap cfx
law 1 2
dac ch
stf 6
cff,
                                           /save return address
                                           /set up to run motor twice
cfb,
                                           /turn on motor
              cli
              iot 11
ril 4s
              spi i
              jmp cf1
jsp cfj
cfa,
              spi
              jmp cfa
              jsp cfj
spi i
cf1,
              jmp cf1
clf 6
                                           /turn off motor
              law 1 7777
dac ch1
                                          /set up to delay
              isp ch1
jmp .-1
isp ch
               jmp cfb
cfx,
              Jmp .
cfj,
              dap cfy
              jmp ctb
              cli
              1ot 11
ril 4s
cfy,
              jmp .
```

4. Timing Marks Reader Subroutine

This subroutine uses information supplied by the timing marks location calculation routine, namely, the values $X = c(\underline{xnb})$, $Y = c(\underline{yb})$, $Dx = c(\underline{ux})$ and $Dy = c(\underline{uy})$. It then proceeds to display bars of points (n points long, where $n = c(\underline{12})$, initially 7; this value may, of course, be changed by the operator). Each bar intersects a timing light position and if the light is lit, two or more points will be seen by the reader.* The bars are displayed from bottom to top, left to right starting at the lower left corner.

When a timing light has been seen, the routine computes, from the display coordinates used, the corresponding bit in a three register table in the output block. The right-hand 14 bits of these three registers may be taken as a bit picture of the timing lights, e.g., the pattern

on the film, where | represents light on and ‡ represents light off, gives

```
000 011 100 110 010 001 or 034621
000 000 011 001 010 011 003123
000 001 010 000 100 100 012044
```

in core. These three words are written out on magtape as words 5, 6, and 7 of the control section of the output record.

^{*} The bar is made up of a series of points displayed at every second addressable location on the scope. The spacing may be reduced to increase detection probability by changing the contents of \underline{dx} from 1000 to 400.


```
timing marks reader subroutine 4 feb 64
           dap qsx
                                 /save return address
q1,
           dzm tk1
           dzm tk2
           dzm tl1
           dzm tl2
           dzm t13
           dzm hb0
           dzm hb1
           dzm hb2
           clf 3 lac yb
           dac y
                                 /set up initial x-coordinate
           lac xnb
                                 /of lower left bar = X
           dac xb
                                 /initiate x
q11,
           lac xb
           dac x
q2,
           lac x
           lio y
szf 3
                                 /was a point seen last time?
           jmp q3
dpy-i
                                 /yes
/no - display next point
           lac x
                                 /increment x
           add dx
           dac x
           1dx tk1
           sas 12
                                 /finished this bar?
                                 /no
           jmp q2
           dzm tk1
                                 /yes - zero counter
           law 1
           sub tk2
           dzm tk2
           spa
                                 /was more than 1 point seen?
                                 /yes - store bit in tl table
           jmp q7
q4,
           lac y
                                 /no - go on to next bar
           add uy
           dac y
           1dx hb1
                                 /through with this set of 3?
           sas (3
           jmp q11
                                 /no
           lac yb
                                 /yes
           dac y
           dzm hb1
           lac xb
                                 /move to next column
           add ux
           dac xb
           1dx hb2
           sas (16
                                 /done all columns?
                                 /no
           jmp q11
                                 /yes - return to main program
qsx,
           jmp .
```

```
q3,
              idx tk2
                                           /count number of points seen
               clf 3
               jmp q2
              lac (2
q7,
               sub hb1
               add (tl1
                                           /compute register in tl table
               dap qa1
              dap qa2
lac hb2
              sub (15
                                           /compute bit number in register
               sza i
               jmp q6
               dac hb0
               law 1
               dac hb3
              lac hb3
95,
                                           /shift bit to correct position
               sal s
               dac hb3
               1sp hb0
              jmp q5
lac hb3
q10,
                                           /OR the bit into the tl table
              ior
qa1,
qa2,
               dac
               jmp q4
q6,
               law 1
               dac hb3
               jmp q10
                                           /x-coor of current column
/y-coor of lowest row
/initial x of lowest left bar
xb,
               0
yb,
               0
xnb,
               0
                                           /distance between points on bar
dx,
              1000
                                           /initial x-dist between bars
ux,
               0
                                           /initial y-dist between bars
/number of points per bar
/cntr - points displayed per bar
/cntr - points seen per bar
              0
uy,
12,
              7
tk1,
tk2,
               0
                                           /cntr - shifts
hb0,
                                           /cntr - bars per column
/cntr - number of columns
/bit holder
hb1,
               0
hb2,
               0
hb3,
              0
```

5. Constants and Temporary Storage

Since the film is framed and no tracking is done, all constants having to do with film advancing are dropped from the list. Also, the registers <u>tl1</u>, <u>tl2</u>, and <u>tl3</u> in the output record are now identified as containing the timing light readings. Otherwise, the list is as before.

III. MODIFICATIONS TO FILM READING PROGRAM SYSTEM

Two further changes have been made to the Film Reading Program System, its programs and equipment. First, the tape system was changed to one which provided for block transfers from memory with core memory references interleaved with main frame operation and second, the assembly program was changed from MACRO to MIDAS.

A. Tape System

A new tape system, consisting of

- 1) a High-Speed Channel Control Type 19
- 2) a High-Speed Data Control Type 131
- 3) an Automatic magnetic Tape Control Type 510, and
- 4) three IBM Tape Transports Model 729 VI,

was added to the installation replacing the Type 51 Tape Control and Type 50 Transports. This new equipment allowed recording at densities of 200, 556 and 800 characters/inch and allowed for automatic block transfers to and from memory.

The effect on the film reading programs was minimized by writing a tape package which looked to the user almost exactly like the routines already used.* As a matter of fact, the same block output routine was used to set up the calling sequences.

There is one difference between the tape packages that is worth noting: it was not practicable to include the scatter-gather feature in the new package. This has not been a constraint, however, since the film reading programs themselves have not been required to use that feature.

A listing of the routines is given in Appendix D: it is a version with absolute addresses which can be assembled without fear of symbol conflict.

B. MIDAS Assembly Program

Minor modifications have been made to the programs to adapt them for the MIDAS assembler:

^{*} See Appendix B.

- the macro definitions of the Extended MACRO System (see Appendix A) have been incorporated into the first, or definitions, tape of the program;
- 2) certain symbols and parameter assignments have also been incorporated into that tape (see listing on following two pages);
- 3) pseudo-instruction names with more than four characters have been spelled out in the listing, since MIDAS recognizes symbols up to six characters long and no longer equates such symbols as flex and flexo.

film reading program system series 1/2 20 jul 64

/for MIDAS compilation

/definitions

bintape define dzm 7

terminate

define bcdtape

law 1 dac 7

terminate

define rewind

jsp 633

terminate

define weof

Jsp 415

nop

terminate

s=1s

dpy=730007 clo=szoVspaVsma 1

xx=hlt

clc=claVcma

szm=szaVsma

spq=szm i

define sensewitch a

szs 8xa

terminate

define init a, b

law b

dap a

terminate

define index a,b,c

idx a

sas b

jmp c

terminate

define swap

rcl 9s rcl 9s

terminate

define

listen claVcliVclf 1 szf i 1 jmp .-1 tyi

terminate

define

load a,b lio (b dio a

terminate

define setup a,b

dac a

terminate

define count a,b

isp a jmp b

terminate

define

move a,b lio a dio b

terminate

define clear a,b/c init c,a

dzm

index c, (dzm b 1,c

terminate

IV. CONCLUSIONS

The film reading program system described herein has been written to digitize A-scope traces in three different formats. It is evident that additional "series" could be prepared to read film in other formats, and as a matter of fact, three such programs have been written for nonproduction film reading. Since the framework is already available, the filling out of the program for a particular job is reasonably easy.

The accuracy with which the reader records the information from the film has been the subject of a recent study, which showed that within the limits of the quantization, there is essentially no error introduced by the film reader.

Thus, the Programmable Film Reader is a flexible and accurate tool for the reduction of large amounts of film data to computer assimilable form.

^{*} See Appendix E.

APPENDIX A EXTENDED OPS AND MACROS

extended ops and macros 8 november 1962

lap=cla 100 oh=iot i clo=651600 spq=650500 szm=640500

define

senseswitch A repeat 3, A=A+A szs A

term

define

initialize A, B

law B dap A term

define

index A, B, C

idx A sas B Jmp C term

define

listen

cla+cli+clf 1-opr-opr szf 1 1 jmp .-1

tyi term

define

swap rcl 9s rcl 9s term

define

load A, B lio (B dio A term

define

setup A, B law i B dac A term

define

count A, B
isp A
jmp B
term

define

move A, B lio A dio B term

define

clear A, B init .+2, A dzm

index .-1, (dzm B+1, .-1

term

APPENDIX B

MAGNETIC TAPE ROUTINES FOR PROGRAMMED TAPE SYSTEM

The tape equipment used by the computer for which these film-reading programs were written requires all timing to be done under program control and requires character by character transfer between computer and tape. A set of subroutines is used to control timing and information transfer in such a way as to produce standard IBM formatted tapes. These routines were written by William Fletcher of Bolt, Beranek and Newman in the DECAL language and are now available from the Digital Equipment Computer Users Society (DECUS). The listing which follows is an instruction by instruction translation of the routines from DECAL to MACRO.

There are four routines:

- I. Scatter read and check forward and reverse. This routine will read words from tape in either the forward or reverse direction and either store them in specified areas in core or check them against the contents of such areas. The film reading programs use only the checking facility, both forward and reverse.
- II. <u>Gather write forward</u>. It is possible to write only in the forward direction, so this routine has only the one option. It will take words from specified areas in core storage and write them as an IBM record on tape. In addition, the routine will write an end-of-file record if entered at location wef.
- III. Space. This routine will space the tape forward or in reverse a specified number of records.
 - IV. Rewind. This routine rewinds the tape.

As used, all of the routines use logical tape unit i.

magtape routines 15 jan 64

/I. scatter read and check forward and reverse

```
201/
src,
           lio csa
                                 /entry for check mag tape reverse
           sma 200
srr,
           lio cda
                                 /entry for read mag tape reverse
           dac pic
                                 /save return address
           law rel
                                 /set up to check for eob character
           dap ebx
           lac lm1
                                 /set stp to decrement
           dac stp
brh,
           law 372
                                 /set last delay
           dap std
           lac (rir 6s
                                 /set final rotates
           dac r5
           stf 5
                                 /flag 5=1 indicates reverse
           jmp s8
sfc,
           lio csa
                                 /entry to check mag tape forward
           sma 200
sfr,
           lio cda
                                 /entry to read mag tape forward
                                 /save return address
           dac pic
                                 /don't check for eob character
hl,
           law mis
           dap ebx
           lac (law 1
                                 /set stp to increment
           dac stp
frb,
           law 127
                                 /set final delay
           dap std
           lac cno
                                 /no-op the final rotate
           dac r5
           dac r6
           lac (ril 6s clf 5
                                 /rotate order for forward
                                 /flag 5=0 indicates forward
s8,
           dac rl
                                 /set the rotates
           dac r2
           dac r3
           dac r4
           dio dl
                                 /set the store or compare order
           dio d2
           lac stl
                                 /jmp in if transport running
           sza
           jmp fir
           law 200
                                 /start transport forward or reverse
           szf 5
           law 240
           Jda set
           ril 3s
                                 /check for load point
           spi
           jmp frs
           law 1 4000
                                 /bypass 3 inches if at load point
```

```
.jda del
frs,
            law 1 505
                                   /forward read starting time
            szf 5
            law 1 226
brs,
                                   /backward read starting time
            jda del
fir.
            1dx fch
                                   /first character indicator
            dzm ckr
                                   /initialize
            dzm psc
            dzm noc
            xct stp
                                   /set end test to fail
            dac mte
            dzm mpt
            lio i pic
                                   /get first address or bypass number
            law nor
                                   /set entry
            sp1
            law byp
            dap lox
            spi
                                   /bypass is first
            jmp sel
            dio mpt
                                   /set pointer to first address
            idx pic lac i pic
                                   /set end check
            dac mte
            idx pic
            law 1 7777
dac Tot
clf 2
                                   /look for 80 milliseconds
sel,
                                   /clear flags and buffer
            clf 4
            clf 5
            clf 3
            mcb
            szf 2
lko,
                                   /wait for flag 2
lox,
            Jmp .
                                   /go to normal entry or bypass entry
            isp lot
                                   /count
            jmp lko
                                   /index pickup and stop transport
/error halt for no characters on tape
/undo eob check
            jsp upc
nch,
            jmp .
            law mis
rel,
            dap ebx
            jmp sel
            cli
                                   /clear io and read in first 6 bits
nor,
            xct h5
            szf 12
                                   /10 norm-5 to speed up
            nop
            szf 1 2
                                   /15 norm-5 to speed up
            xct cno
                                   /away we go
            jmp ent
            szf 1 2
top,
cno,
            nop
                                   /10 norm-5 to speed up
                                   /law 1 or law 1 1
stp,
            0
                                   /clear io and check for miss
            cli
            szf 12
            Jmp mis
            mrc
                                   /read first six bits
            add mpt
                                   /increment pointer
```

```
sad mte
                                  /check for end of memory block
            imp swi
           dac mpt
                                  /store the incremented pointer
ent,
           szf i 2
                                  /15 norm-5 to speed up
           xct cno
           szf 1 2
                                  /5 norm-20 to slow down
           xct h2
                                  /rotate io and check for miss
r3,
           szf i 2
ebx,
            Jmp .
                                  /miss or relook
                                  /read second six bits
           mrc
                                  /indicate not first character
nfc.
           dzm fch
           law mis
                                  /undo eob exit since 2nd character seen
           dap ebx
           xct h3
           xct cno
szf i 2
                                  /15 norm-5 to speed up
h2,
           xct h2
                                  /5 norm-20 to slow down
r4,
                                  /rotate io and check for miss
           szf i 2
            jmp mis
                                  /read third six bits
           mrc
                                  /final rotate or nop
r6,
           rcl 9s
                                  /word into ac
           rcl 9s
d2,
                                  /store or compare
            Jmp top
            Jmp rdc
            dio bdw
                                  /record last character read and enter
mis,
           lac fch
                                  /miss if not first character
            sza i
            jmp msn
            law 1700
                                  /is first character 17?
            sas bdw
            jmp msn
            lac par
            sza
           clc
           szf 4
           cma
                                  /check for proper parity
            sza i
            jmp msn
           xct std
            Jda del
            Jsp upc
                                  /index pickup and stop transport since
                                  /eof mark seen
efh,
                                  /halt because end of file found
            jmp .
                                  /get next first address
/if minus, it is number to bypass
swi,
            lac i pic
            spa
            jmp bys
           szf 1 2
                                  /5 norm-20 to slow dow
           xct h2
```

```
rl,
                                    /rotate io for next character
            0
            szf 12
                                    /check for miss
            imp mis
                                   /read second six bits
            mrc
            dac mpt
                                   /store new pointer
            idx pic
            lac i pic
            dac mte
szf 1 2
                                    /store new mte
                                    /5 norm-20 to slow down
            xct h2
r2,
                                   /rotate 10 and check for miss
            0
            szf i 2
            jmp mis
            mrc
                                    /read third six bits
            idx pic
                                    /step pickup for next block
r5,
                                    /final rotate or no-op
            0
            rcl 9s
rcl 9s
                                    /word into ac
dl,
                                    /store or compare
            jmp stp
                                    /loop
rdc,
            dac bdw
                                    /store the offending word
                                   /indicate a read check error
/set flag 5 so 3 won't get set
/record a miss (flag 3) unless 5 on
            idx ckr
            stf 5
szf 1 5
spc,
msl,
            stf 3
            clf 2
msn,
            mcb
                                    /clear buffer for next character
            law 1 5
                                    /set for 200 %s look
            dac lot
msk,
            szf 2
                                    /start over when character seen
            jmp msl
            isp lot
                                    /continue looking
            jmp msk
            xct stp
                                    /update block count
            add blo
            dac blo
fsh,
            lac i pic
                                    /step pickup to return
            cma
            sza i
            Jmp s4
            idx pic
            jmp fsh
s4,
            idx pic
            Jmp s6
                                    /stop and error return if parity error
            szf 3
            jmp s6
                                    /same if missed character
                                    /set return for normal
            idx pic
            lac ckr
            sza
            idx pic
                                    /return 1 past normal if check error
            lac sop
```

```
s7a,
            dac stl
                                   /record whether or not stopped and
            dzm sop
                                   /reset to stop next time
                                    /if not zero, don't stop
            sza
            jmp nod
            law i 0
std,
                                   /final delay
            ida del
            lio unt
            msm
                                   /whoa
            lio psc
stf 2
nod,
            xct stp
            add mpt
            sas mte
            jmp s7
            spi i
clf 2
                                   /2 on unless psc + and ptr at end
            law blo
s7,
            add unt
            dap dbl
            lac blo
                                   /get current block count
                                   /store block count for current unit /status bits in io for return
dbl,
            dac
            mcs
            jmp i pic
                                   /return to calling program
                                   /force a stop
56,
            cla
            Jmp s7a
byp,
            cli
            xct h5
                                    /clear io and read first six bits
                                   /get the pass count in the ac /15 norm-5 to speed up
            lac i pic
            szf i 2
            xct cno
            szf i 2
                                   /15 norm-5 to speed up
            xct cno
szf i 2
                                   /5 norm=20 to slow down
            xct h2
            ril 6s
                                   /check for miss
bys,
            szf i 2
            xct ebx
                                    /miss or relook
h5,
                                   /read second six bits
            mrc
            dac psc
sal 1s
                                   /times 3
            add psc
            dac psc
            sza i
                                   /bypass zero means end
            Jmp spc
                                   /step pic
            idx pic
                                    /check for miss
            xct h3
            jmp mis
                                    /read third six bits
            mrc
            idx psc
                                   /count 2
            idx psc
```

```
psl,
            isp psc
                                  /count each character
            sma 200
                                  /re-enter reading after countup
            jmp top
szf i 2
                                  /10 norm-5 to speed up
           nop
h3,
           szf 1 2
                                  /5 norm-20 to slow down
           xct h2
           xct h3
                                  /check for miss
            jmp mis
           mrc
                                  /read character
                                  /indicate first character passed
           xct nfc
            jmp psl
set,
            0
           dac exi
           law 3 and unt
                                  /and off unit bits
           dac unt
            law blo
           add unt
            dap gbl
                                  /get block count for current unit
/store it
gbl,
           lac
           dac blo
           lio unt
s1,
                                  /select unit and interrogate
           msm
           mcs
           sma 200
                                  /unit is ready if bit 0 = 0
            jmp rwi
            law 20
           and set
           sza i
            Jmp s2
           ril 2s
                                  /unavailable, is file protect on write
           spi i
            jmp uah
s2,
            law 1 764
                                  /transport stopping time
            Jda del
           lac par
                                  /do the order after clearing
           sza
                                  /the status bits in io for return
           law 10
            ior set
           ior unt
           rcl 9s
           rcl 9s
           mcb
           msm
           mcs
35,
           jmp i exi
exi,
           0
           ril s
                                  /rewinding if bit 1 = 0
rwi,
           spi i
            jmp s1
            Jsp upc
                                  /undex pic
uah,
unh,
            jmp .
unt,
           1
```

```
cda.
            dac i mpt
csa,
            sad i mpt
bdw,
            0
sop,
            0
stl,
            0
blo,
            0
bk1,
            0
bk2,
            0
bk3,
            0
            0
par,
            0
mpt,
mte,
            0
pic,
del,
            0
                                    /20 ps per count
            dap dex
a1,
            nop
            isp del
            jmp a1
dex,
            jmp .
            dap ure
law i 1
upc,
lm1,
            add pic
            dac pic
            dzm sop
                                    /record the stop
            dzm stl
                                    /stop the unit and get status bits
            lio unt
            msm
            mcs
ure,
            jmp .
/II. gather write forward
51/
                                    /entry to write a block
/start writing immediately if
gwf,
            dac pic
            lac stl
            sza
                                    /transport running
            jmp c14
            law 220
                                    /start the transport
            jda set
            law las
                                   /set to record max for current unit
            add unt
            dap dmx
ril 3s
                                    /check for load point
            spi
            jmp c1
            law 1 6000
                                    /extra delay for first block
            jda del
            law 1 301
c1,
                                    /normal delay before writing
            jda del
```

```
c14.
           lac i pic
                                 /exit immediately if first word negative
           spa
           .jmp c12
                                 /store first pointer and enter loop
           dac mpt
           Jmp c7
c4.
           mwc
                                 /write the second six bits
                                 /rotate third six bits into position
c11,
           ril 6s
                                 /increment pointer and check for
           idx mpt
           sas mte
                                 /end of block
           .1mp c5
           lac i pic
                                 /fetch new pointer and store
           dac mpt
                                 /negative signifies end of list
           spa
           jmp c10
           xct c4
                                 /write third six bits after delaying 5
           idx pic
lac i pic
c7,
                                 /fetch new end check
           dac mte
           idx pic
                                 /fetch next word to write
c6,
           lio i mpt
                                 /write the first six bits
           mwc
           xct c11
                                 /rotate 2nd six into position, delay 5
           law 1 1
           Jda del
                                /delay 45
           Jmp c4
c5,
           xct . 1
                                 /delay 25
           xct cno
                                 /write third six after 5 delay
           xct c4
                                 /delay 40
           xct c5
           xct c5
           Jmp c6
                                 /write the final six bits
c10.
           mwc
                                 /step block counter
           idx blo
dmx,
           dac
                                 /record max for current unit
c12,
           idx pic
           law 1 13
                                 /delay 235
           .jda del
           mcb
                                 /clear writers
                                 /status bits to 10
           mcs
           stf 2
                                 /error halt if end point passed
           ril 6s
           spi
           clf 2
           sp1 1
                                 /force a stop if error
           dzm sop
           lac sop
                                 /record a continue
           dac stl
           dzm sop
                                 /don't stop if sop not zero
           sza
           Jmp c13
```

```
fwh,
           law 1 474
                                 /halting time
           jda del
           lio unt
                                 /stop the transport
           msm
c13,
           mcs
                                 /status bits to io for return
           szf i 2
                                 /halt if end point passed
            jmp s7
eph,
            .jmp .
                                 /end point halt
wef,
           dac pic
                                 /entry to write end of file
           lac unt
                                 /stop the transport
            jda set
           law 230
                                 /start write even parity
           jda set
           law 1 4000
                                 /3 inch gap
            jda del
           lio (170000
                                 /write the end-of-file character
           mwc
           dzm sop
                                 /force a stop
las,
           jmp c12 1
                                 /enter last of write routine
mx1,
           Ò
           0
mx2,
           0
mx3,
/III. space
14/
spt,
           dac spx
                                 /save return
           lac i spx
                                 /return immediately if count zero
           spa
           cma
           sza i
           imp spr
           cma
                                 /set the block counter
           dac sco
           lio i spx
                                 /sign of io indicates forward
           law sfr
                                 /or reverse - set for forward or
                                 /reverse
           spi
           law srr
           dap spo
           lac sco
                                 /ready to enter loop
           add (1
                                 /see if only one block left
spl,
                                 /continue unless only one left
           sza
           idx sop
           law 1 620
jda del
1gt,
                                 /time past gap trash
                                 /either sfr or srr
spo,
           jsp
           777777
                                 /don't store anywhere
                                 /ignore errors
           nop
           isp sco
           jmp spl
```

spr,	idx spx lac blo jmp i spx	/block count in ac for return			
spx,	Ü				
/IV.	rewind				
5/					
rew,	dac pic law 340 jda set	/set to rewind			
	lio unt	/clear out the rewind order			
	dzm blo jmp s7	/set block count to zero			

start

APPENDIX C

EQUIPMENT CIRCUIT DIAGRAMS

Figure C1 is a circuit diagram of the original film reader electronics and electrical connections. Since this drawing was prepared, the difference amplifier DEC Type 1547 has been replaced by a Type 1572, since the former is no longer being manufactured and the latter is said to be an improved replacement type.

Figure C2 shows the connections in the computer itself.

Fig. C1 Film reader circuit diagram

Fig. C2 Computer connections

APPENDIX D

MAGNETIC TAPE ROUTINES FOR AUTOMATIC EQUIPMENT

The set of magnetic tape routines given in the listing which follows was written by Bert Schafer to replace the earlier set when the Type 510 Tape Control and IBM drives were added to the installation. They are used in much the same manner as the Fletcher routines described in Appendix B except that the 'scatter-gather' feature has been dropped. Since the calling sequences were made to be of the same form as those for the earlier routines, the same block output routine can be used with either set.

There are six entries to the routines by the calling sequences listed:

1. Write

jsp 70
extended address of first register
1 + extended address of last register
unsuccessful write return
end point return
normal return

2. Read

jsp 440
extended address of first register
1 + extended address of last register
unsuccessful read return
end of file return
normal return

3. Space

jsp 561
number of records to space (+ = forward, - = backward)
number of records too large return
end-of-file return
normal return

4. Write End-Of-File

jsp 415 end point return normal return

5. Read Compare

jsp 503
extended address of first register in reference block
1 + extended address of last register in reference block
unsuccessful read return
end-of-file return
no compare return

6. Rewind

jsp 633

return

Note that it is not possible to read or write in the reverse direction with this equipment.

```
/symbols omitted from this version
sw1=722046
swo=726046
5/
                               /density, 0 for 200 cpi, 1 for 556, 2 for 800 /unit, 0 thru 7
             0
             1
                               /parity, 0 odd, 1 even
             0
                               /rewind indicator, 0 for no, 4000 for rewind /+ means start of function, - otherwise
             0
             0
             0
                               /record pointer
                               /location of jsp to tape package /select instruction
             0
             0
             repeat 53,0
                               /table of functions
             jda 373
                               /initialize rwi, js, fup, tcu-unit free sr
             law 1 3
             dac 720
                               /init blank tape counter
             law i 3
dac 721
                               /init rewrite counter
             Jsp 201
                               /go to tcu-unit free sr, setting sof to +0
             731071
             jsp 267
                               /process calling sequence for data channel
             sia
             110 712
             SWO
                               /swc out
                               /execute function, test for acceptance
             jsp 333
                               /and completion
                               /increment record count
             Jmp 116
                               /error return
             law 5
                               /no error--go to normal return
             add 13
             dap 115
             lac 373
             ral 1s
             sma
             lem
             jmp .
                               /return to main program
             jsp 166
                               /go to see if any errors beside end point
                               /non-end pt errrors
             jmp 123
             cli
                               /indicates end pt not during wbt
```

17 Jul 64

schafer tape package for ibm equipment

```
Jmp 107
                             /go to end pt return in main program
            Jsp 201
            730471
                             /basic backspace function
                             /disconnect data control and execute function
            Jsp 332
                             /decrement record count
             jmp 147
                             /error return from backspace after write
                             /normal return
            isp 721
            jmp 75
                             /rewrite
            law 1 10
            dac 704
                             /set counter to write blank tape
                             /8 times for a total of 6 inches
             Jsp 201
            731071
                             /basic write mtf
            jsp 332
                             /disconnect data control and execute function
            -0
                             /do not change record count
             jmp 153
                             /error return from write blank tape
            1sp 704
                             /normal return
            jmp 134
/6 inches blank tape written
            isp 720
            jmp 73
                             /init rewrite counter
            law 3 jmp 107
                             /go to unsuccessful return in main program
            Jsp 407
                             /save state reg and initial loc counter
            110 672
            jsp 356
jmp 130
                             /go to normal return
            jsp 166
                             /blank tape error
            Jmp 157
110 706
                             /there are non-end pt. errors
                             /make IO negative implying end pt during wbt
            jmp 121
                             /go to end pt return in main program
            jsp 407
                             /save state reg and init loc counter
            110 673
            Jsp 356
            ral 7s
            spa
            jmp 155
                             /end pt
            Jmp 141
                             /continue write operations
            dap 174
                             /routine to determine if other errors
                             /beside end pt
            swap
            and 714
                             /mask out time bit and all non-error bits
            sza i
            1dx 174
                             /no other errors beside end pt
            jmp .
```

law 4

/tcu-unit free sr

```
110 706
dio 11
                 /setting sof neg means not start of function
dap 245
jmp 224
dzm 11
                 /setting sof pos means start of function
dap 245
                 /set return to 1+ loc(jsp tcz)
dap 210
nop
nop
lac 7
sal 7s
                 /move parity indication into bit 10
ior .
                 /construct function with correct parity
nop
dac 336
                 /store into execution routine
1dx 245
                 /set return to 2+ loc(jsp tcz)
law 1
add 5
sal 3s
1or 6
sal 6s
ior 10
ior 706
dac 14
                 /store constructed select instruction
lac 662
dac 705
                 /set counter to -66666 decimal
sfc
jmp 231
jmp 243
jsp 407
isp 705
jmp 226
cgo
                 /tcu not free within 5 secs
lio 663
lac 11
spa
110 664
jsp 356
jmp 367
                 /go to error typeout specifying cb1 or cb2
                 /go to halt again
lac 11
                 /tcu is free--is this start of function?
spa
                 /normal exit
jmp
xct 14
                 /select tape
rsr
rir 1s
spi
jmp 246
                 /tape is rewinding
lac 662
dac 705
                 /set counter to -66666 decimal
rsr
spi i
jmp 245
                 /normal exit
```

```
Jsp 407
                              /save state reg and init loc counter
             1sp 705
Jmp 255
                              /unit not free within 5 secs
             cgo
             110 665
             Jsp 356
             Jmp 246
                              /try again
/sr to load data channel
             dap 322
lac 373
dap 272
                              /set up return
                              /pick up reg containing 1st address
             lac .
                              of output or input block
             dac 711
             spa
             Jmp 327
                              /illegal calling sequence
             sub 667
                              /(1st address) - (last address of package)
             spq
             Jmp 323
                              /illegal except for write
             add 667
                              /restore 1st address
             sub 670
                              /(1st address) - 040000
             sma
             Jmp 327
                              /illegal calling sequence
             1dx 272
             xct 272
             spa
             jmp 327
sub 711
                              /illegal calling sequence
             dac 712
                              /store tentative word count
             spq
             jmp 327
add 711
                              /illegal calling sequence
                              /restore 2nd address
             sub 670
                              /(2nd address) - 040000
                              /2nd address may be < 040000
             szm
             jmp 327
lio 711
                              /illegal calling sequence
             jmp .
             11o 336
                              /pick up function
             ril 9s
             spi i
             Jmp 301
                              /legal for write
             110 671
             jsp 356
                              /type out error message for illegal
                              /calling sequence
             Jmp 145
                              /go to unsuccessful return
```

```
/routine to execute function and wait for completion
              sdf
             dap 355
dap 345
xct 14
                                /set up return
                                /select tape to clear indicators
                                /in state register
                                /function to be executed is prestored here
              sfc
             Jmp 344
110 666
                                /function accepted
              jsp 356
jmp 335
                                /function not accepted--type error message /try again
              Jsp 175
                                /function accepted -
                                /is tou free in less than 5 secs?
                                /pick up record number increment /or decrement
             lac .
             add 12
             dac 12
              1dx 355
             rsr
             ril 1s
             spi i
idx 355
              jmp .
/error typeout routine
             dap 372
ril 6s
                                /set up return
             tyo
             ril 6s
             tyo
             ril 6s
             tyo
             110 713
                                /put code for carriage return
                                /in right 6 bits
             tyo
             lac 707
lio 710
             hlt
```

/return to program which called

jmp .

```
/initialization routine
                               /1+loc(jsp to tape package)
             dap 406
                               /set up return
             dzm 10
             lac 373
dap 563
             nop
             sub 456
                               /1
             dap 13
             nop
             nop
             nop
             jmp .
             dap 414
             rlc
             dio 710
             rsr
             d10 707
             jmp .
/write end of file section
             jda 373
jsp 201
                               /write eof function
/disconnect data channel and
             733271
             jsp 332
                               /execute function
                               /increment record count
             jmp 425
                               /error return
             law 2
             jmp 107
                               /return to normal return of main program
             jsp 166
jmp 431
                               /there are non-end pt errors
             law 1
                               /only end pt
             jmp 107
                               /go to end pt return of main program
             jsp 407
lio 676
                               /save state
             Jsp 356
             ral 7s ·
             spa
             jmp 427
                               /go to end pt return of main program
             jmp 423
                               /go to normal return of main program
/section for read and read-compare
             dzm 703
jda 373
                               /set read compare indicator to straight read
             law 1 3
```

dac 717

```
jsp 201
731471
Jsp 267
                 /process calling sequence
lac 703
sza
Jmp 506
                 /read compare
sia
lio 712
                  /swc in
swi
Jsp 333
                  /execute function, test for
                  /acceptance and completion
                  /increment record count
Jmp 467
                  /error return
rir 5s
                  /no error--move eof bit into sign
spi
jmp 121
                  /end of file return
lio 703
spi i
Jmp 106
                  /normal return
Jmp 514
                 /read compare
jsp 201
730471
                  /basic backspace function
Jsp 332
                 /disconnect data control and
                 /execute function
                  /decrement record count
-1
Jmp 477
                  /error return from backspace after read
isp 717
jmp 444
                 /normal return from backspace
                  /re-read
Jmp 145
                 /go to unsuccessful return in main program
jsp 407
                 /save state
110 674
Jsp 356
Jmp 474
                 /normal return
lio 472
                 /-1
                 /set rci to specify read compare
dio 703
Jmp 441
1dx 712
sub 700
                 /index word count
                 /(1+specified word count) - (1024 decimal)
szm
jmp 327
lio 702
jmp 452
                 /illegal calling sequence
                 /start of read compare buffer
```

```
/successful read----go to do comparison
              law i 1
              add 712
              dac 712
                                 /restore wc to length of core block
              cma
              dac 704
                                 /set counter to -(core block length)
              rlc
              swap
              and 713
              sub 702
                                 /number of words read is now computed
              sas 712
              Jmp 547
                                 /blocks not equal
              cli
                                 /set IO to +O
              lac 711
              dac 715
lac 702
dac 716
              eem
              lac i 715
sas i 716
              jmp 106
idx 715
idx 716
isp 704
                                 /go to no compare return in main program
              Jmp 536
/comparison OK
              law 6
              Jmp 107
                                 /go to comparison ok return in main program
                                 /blocks not equal
              sub 712
              spa
              Jmp 554
                                 /tape block < core block
                                 /tape block > core block
/set IO to -1, ct1 already set properly
              110 472
              Jmp 531
                                 /words read < core block, set IO to -O /restore number of words read
              1io 137
              add 712
              cma
              dac 704
                                 /set counter to -(length of tape block)
              Jmp 531
```

/section for space function

```
Jda 373
lio 470
                 /basic backspace function
                 /pick up plus or minus the number /of records to be spaced
lac .
sma
110 445
                 /basic forward function
dio 601
110 472
                 /-1
sma
110 456
                 /+1
dio 613
sma
cma
                 /-0
sad 137
jmp 121
                 /zero spacing required, go to normal return
dac 704
                 /counter contains -(no. of records to space)
jsp 201
                 /basic function is preset
lac 12
                 /pick up record pointer
SZA
jmp 612
                 /record pointer not 0 - perform
                 /spacing function
                 /pick up + number of records to space
xct 563
sma
jmp 612
                 /perform forward spacing function
110 704
Jmp 423
                 /go to record 0 return in main program
                 /disconnect data control and execute function
jsp 332
                 /-1 or +1
-1
jmp 624
                 /error return
                 /no error--bring state into IO
rsr
rir 4s
                 /rotate eof bit into sign
spi
jmp 630
                 /eof found
isp 704
jmp 600
                 /space some more
jmp 121
                 /go to normal return
jsp 407
                 /error from spacing - save state reg and
                 /init loc counter
110 675
jsp 356
jmp 615
                 /error typeout
                 /normal return
1dx 704
110 704
                 /go to end of file return
jmp 145
```

```
/section for rewind
              .jda 373
              law 4000
              dac 10
                                /set rewind indicator to rewind state
              jsp 201
730471
                                /basic backspace function
              swap
              rar 6s
              nop
              spa
              Jmp 651
                                /at load point
              Jsp 332
                                /disconnect data control and
                                /execute function
              0
              jmp 653
dzm 12
                                /error return
                                /no error--reset record pointer
              Jmp 427
                                /go to normal return in main program
              jsp 407
lio 677
law 1 700
                                /save state reg and init loc counter
                                /mask to remove parity and
                                /density from state indicators
             and 707
sas 701
jsp 356
              jmp 651
/constants, temp storage, masks, etc
decimal
              -66666
octal
              text (cb1)
text (cb2)
text (ub)
text (fna)
              721
040000
                                /last reg of program
```

```
2000
600001
036000

/start of read compare buffer
/read compare indicator, 0 for
/straight read, - for read compare

0
0
720070
0
0
0
177777
370001

/reread counter
/blank tape counter
/rewrite counter
```

start

APPENDIX E

CALIBRATION OF PROGRAMMABLE FILM READER

- I. Six test patterns were chosen to evaluate the performance of the PFR, and are displayed in Figs. E-1a-E-6a.*
 - (E-1a) a straight line
 - (E-2a) an inverted "V" with angle of about 69°
 - (E-3a) an inverted "W" with all angles about 60°
 - (E-4a) two inverted "V's", each with angle of about 28°
 - (E-5a) a descending staircase; and
 - (E-6a) three rectangular pedestals of decreasing altitude and constant width.

Because a sharp angular trace should tax the system more than one that changes direction slowly, these traces, with their vertical and horizontal segments and triangular waves of varying steepness, seemed to be good diagnostic tools. In addition, note that patterns E-1a-E-4a are bilaterally symmetric, affording a check on whether horizontal distortion is introduced due to the curvature of the scope face. In the same fashion, Figs. E-5a and E-6a afford a check on potential vertical distortion.

All traces are equally long, being bounded left and right by the same pair of calibrated rectangular pedestals. The vertical lines at the side of the traces were intended merely as reference marks for the operator of the PFR. When the traces were prepared, a camera-alignment error resulted in a slight tilting of the traces on the film. The PFR, of course, reproduced this tilt, so that the right side of each trace appears somewhat higher than the left.

Each trace was photographed twenty times, but only one of each kind was later read by the film reader. Preliminary tests indicated that, for each series of 20 frames

^{*}Figs. E-1b through E-6b, shown on facing pages, represent photographed redisplays of the trace readings and are described in a later paragraph.

there was no greater variability from frame to frame than there was in repeated readings of a single frame. As a consequence, the calibration tests described below used only one of the twenty frames available for each of the six patterns.

The length and width of trace segments were measured with a Bausch and Lomb toolmaker's microscope. This microscope is scaled to .0001 inch and reset accuracy was determined to be \pm .0002 inch. These measurements were to be used for an error analysis of the PFR readings. However, as Figs. E-1-E-6 show, the error involved in the automatic film reading was so small as to render such an analysis unnecessary. Several of the measurements were used to obtain an accurate estimate of the number of scope points corresponding to an inch of film. This estimate, 670 scope points per inch, was used to corroborate the PFR count of 12 scope points for the width of traces used in this study.

Using a special modified version of the Series 1 program, described in Sec. II.A, the traces were read by the film reader. One of the modifications was to change the film advance subroutine to handle framed film. Every other scope coordinate was sampled in both the vertical and horizontal direction. All traces were read with an f-stop of slightly more than 5.6 for the signal lens and an f-stop of 11 for the reference lens. Each trace was read ten times in order to estimate the variability inherent in the system.

The high voltage supply to the photomultipliers, the scope intensity level, and the focus adjustment were set to yield a high fidelity reproduction of the trace. In other words, the system was tuned so that the redisplay was visually determined to be satisfactory. Preliminary tests had shown that, unless care were taken in focusing and in the setting of voltage and intensity levels, misreadings resulted, such as peak-flattening and trails at the edges of square waves.

The digitized amplitudes of points read were recorded on magnetic tape, retrieved, and examined. The disparity between two readings of the same trace was seldom greater than two ordinate units, and was usually zero or one. The system, in other words, consistently reported essentially the same ordinate value in multiple readings of a single trace.

The points read by the PFR were redisplayed on the oscilloscope by the tape viewing program and photographed. In order to facilitate comparison of the film traces with their associated oscilloscopic redisplays, prints were made both from the test film and from the directly photographed redisplays. Film traces and their associated redisplays are presented on facing pages in Figs. E -1 through E-6.

The radar scan program is designed to track the trace and to calculate its center by averaging the ordinates of its upper and lower edges. How well it does this was examined by the following procedure. The points read by the PFR were plotted on graph paper and mounted on a vertical surface normal to the beam of an ACME 35 mm projector. The appropriate film trace was then projected onto the plot of what had, in fact, been read. This was done for each of the six patterns. The plotted points and their superimposed projections are shown in Figs. E-7 through E-12. It is apparent that the PFR does an excellent job. Peaks are well-delineated, edges do not trail off systematically, and the center of the trace seems to be consistently read to an accuracy of one scope point.

- II. This calibration test has shown that the automatic film reading system is basically sound. Some of the observed disparities between the film traces and the system's output, moreover, may not be the fault of the reader at all, but rather of variables such as imperfect positioning of the film in the film gate when reading is underway. In any case, with film of good quality disparities are small.
- III. Each of the six test patterns was read ten times by the PFR. For each pattern, two of these readings were selected for comparison. The absolute value of the difference between corresponding amplitude readings was recorded and all differences were collected in the frequency table shown below.

		Absolute Difference					
		0	1	2	3	>3	
Pattern I	Straight Line	211	45	_	_	_	
Pattern II	Inverted V	179	63	10	4	_	
Pattern III	Inverted W	161	86	9	_	-	
Pattern IV	Two inverted V's	42	159	39	10	6*	
Pattern V	Staircase	200	50	2	3	1*	
Pattern VI	Pedestals	21	206	24	3	2*	

For every paired comparison at least 93.8% of all points showed amplitude differences no greater than two units, and at least 97.7% of all points showed amplitude differences no greater than three units.

^{*} Of the differences greater than three, all of those for Patterns V and VI and two of those for Pattern IV represent slight differences in alignment rather than inherent variability. All of these cases involve transitions to or from a horizontal trace portion: one reading gave the amplitude of a terminal point of this horizontal portion, while the other gave the amplitude of the first point beyond it.

Fig. E-1a Print from film

P115-172

Fig. E-1b Print from redisplay

Fig. E-2a Print from film

Fig. E-2b Print from redisplay

-PA-1804

Fig. E-3a Print from film

Fig. E-3b Print from redisplay

-PA-1805

Fig. E-4a Print from film

Fig. E-4b Print from redisplay

-TA-1906

Fig. E-5a Print from film

Fig. E-5b Print from redisplay

Fig. E-6a Print from film

Fig. E-6b Print from redisplay

Fig. E-7 Graph of computer output superimposed on projection of film

Fig. E-8 Graph of computer output superimposed on projection of film

Fig. E-9 Graph of computer output superimposed on projection of film

Fig. E-10 Graph of computer output superimposed on projection of film

Fig. E-11 Graph of computer output superimposed on projection of film

Fig. E-12 Graph of computer output superimposed on projection of film

BIBLIOGRAPHY

- 1. F-15D PDP-1 Handbook, Digital Equipment Corporation, Maynard, Massachusetts, October 1963.
- 2. Digital-1-1-S MACRO Assembly Program Manual, Digital Equipment Corporation, Maynard, Massachusetts, 1964.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D				
(Security classification of title, body of abstract and indexing annotation must be . ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION		
Lincoln Laboratory, M.I.T.		Unclassified 2b. GROUP		
3. REPORT TITLE				
Programmable Film Reader				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Technical Note				
5. AUTHOR(S) (Last name, first name, Initial)				
Armenti, A.W., Clapp, D.F., Schulman, A.I., and Wiesen, R.A.				
6. REPORT OATE	7a. TOTA	L NO. OF PAGES	7b. NO. OF REFS	
10 March 1965		194	2	
8a. CONTRACT OR GRANT NO.	9a. ORIG	INATOR'S REPORT	(UMBER(S)	
b. PROJECT NO. 28)-500	Tech	Technical Note 1965-1		
c.			ER REPORT NO(S) (Any other numbers that may be ned this raport)	
_		- TDR-65-57		
d. 10. AVAILABILITY/LIMITATION NOTICES	201	200-1010-03-31		
11. SUPPLEMENTARY NOTES 12. SPONSORI		SORING MILITARY A	CTIVITY	
	Air	Force System	s Command, USAF	
13. ABSTRACT				
The Programmable Film Reader, consisting of digital computer, magnetic tape units, CRT, and film transport with optical and electronic circuits is a device for reducing radar A-scope film data to digital form. This is done by scanning selected portions of the film with a spot of light under program control. The relative amount of light passing through the film is measured by the device and reported back to the computer for processing.				
A set of computer programs, called the Film Reading Programs System, has been written for the PDP-1 computer and Programmable Film Reader. These programs will read films in three formats: A-scope traces, A-scope traces with fiducial marks and Project Radar A-scope traces. The amplitudes of the traces are sampled up to about 500 times and the digitized results written onto magnetic tape in IBM format. This report presents a				
		(Continued or	n next page)	
14. KEY WORDS				
magnetic tape or	otical circuits	PDP-l photomultiplic thresholds	flip-flops er filters	

13. ABSTRACT (Continued)

description of the computer programs together with flow charts and listings. The reader is presumed familiar with the PDP-1 computer and the MACRO assembly language.

The latest modification to the system adapts it for use with the MIDAS assembly program and with a new high-speed magnetic tape system on the PDP-1 computer.

Printed by
United States Air Force
L. G. Hanscom Field
Bedford, Massachusetts

